Skip to main content
Log in

Splitting of Dirac Cones in HgTe Quantum Wells: Effects of Crystallographic Orientation, Interface-, Bulk-, and Structure-Inversion Asymmetry

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We develop a microscopic theory of the fine structure of Dirac states in (0lh)-grown HgTe/CdHgTe quantum wells (QWs), where l and h are the Miller indices. It is shown that bulk, interface, and structure inversion asymmetry causes the anticrossing of levels even at zero in-plane wave vector and lifts the Dirac state degeneracy. In the QWs of critical thickness, the two-fold degenerate Dirac cone gets split into non-degenerate Weyl cones. The splitting and the Weyl point positions dramatically depend on the QW crystallographic orientation. We calculate the splitting parameters related to bulk, interface, and structure inversion asymmetry and derive the effective Hamiltonian of the Dirac states. Further, we obtain an analytical expression for the energy spectrum and discuss the spectrum for (001)-, (013)-, and (011)-grown QWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. X.-L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  2. Z. D. Kvon, D. A. Kozlov, E. B. Olshanetsky, G. M. Gusev, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Usp. 63, 629 (2020).

    Article  ADS  Google Scholar 

  3. B. Büttner, C. X. Liu, G. Tkachov, E. G. Novik, C. Brüne, H. Buhmann, E. M. Hankiewicz, P. Recher, B. Trauzettel, S. C. Zhang, and L. W. Molenkamp, Nat. Phys. 7, 418 (2011).

  4. S. A. Tarasenko, M. V. Durnev, M. O. Nestoklon, E. L. Ivchenko, J.-W. Luo, and A. Zunger, Phys. Rev. B 91, 081302(R) (2015).

  5. X. Dai, T. L. Hughes, X. L. Qi, Z. Fang, and S. C. Zhang, Phys. Rev. B 77, 125319 (2008).

  6. M. König, H. Buhmann, L. W. Molenkamp, T. L. Hughes, C.-X. Liu, X. L. Qi, and S. C. Zhang, J. Phys. Soc. Jpn. 77, 031007 (2008).

  7. R. Winkler, L. Y. Wang, Y. H. Lin, and C. S. Chu, Solid State Commun. 152, 2096 (2012).

    Article  ADS  Google Scholar 

  8. L. Weithofer and P. Recher, New J. Phys. 15, 085008 (2013).

  9. M. Orlita, K. Masztalerz, C. Faugeras, M. Potemski, E. G. Novik, C. Brüne, H. Buhmann, and L. W. Molenkamp, Phys. Rev. B 83, 115307 (2011).

  10. M. Zholudev, F. Teppe, M. Orlita, C. Consejo, J. Torres, N. Dyakonova, M. Czapkiewicz, J. Wrobel, G. Grabecki, N. Mikhailov, S. Dvoretskii, A. Ikonnikov, K. Spirin, V. Aleshkin, V. Gavrilenko, and W. Knap, Phys. Rev. B 86, 205420 (2012).

  11. P. Olbrich, C. Zoth, P. Vierling, K.-M. Dantscher, G. V. Budkin, S. A. Tarasenko, V. V. Belkov, D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, Phys. Rev. B 87, 235439 (2013).

  12. G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, M. O. Nestoklon, S. A. Dvoretski, and N. N. Mikhailov, Phys. Rev. B 93, 155304 (2016).

  13. M. V. Durnev and S. A. Tarasenko, Phys. Rev. B 93, 075434 (2016).

  14. E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960).

    Google Scholar 

  15. F. T. Vasko, JETP Lett. 30, 541 (1979).

    ADS  Google Scholar 

  16. Y. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).

    ADS  Google Scholar 

  17. G. Dresselhaus, Phys. Rev. 100, 580 (1955).

    Article  ADS  Google Scholar 

  18. M. I. D’yakonov and V. Y. Kachorovskii, Sov. Phys. Semicond. 20, 110 (1986).

    Google Scholar 

  19. G. E. Pikus, V. A. Maruschak, and A. N. Titkov, Sov. Phys. Semicond. 22, 115 (1988).

    Google Scholar 

  20. E. I. Rashba and E. Y. Sherman, Phys. Lett. A 129, 175 (1988).

    Article  ADS  Google Scholar 

  21. K.-M. Dantscher, D. A. Kozlov, P. Olbrich, C. Zoth, P. Faltermeier, M. Lindner, G. V. Budkin, S. A. Tarasenko, V. V. Bel’kov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, D. Weiss, B. Jenichen, and S. D. Ganichev, Phys. Rev. B 92, 165314 (2015).

  22. K.-M. Dantscher, D. A. Kozlov, M. T. Scherr, S. Gebert, J. Bärenfänger, M. V. Durnev, S. A. Tarasenko, V. V. Bel’kov, N. N. Mikhailov, S. A. Dvoretsky, Z. D. Kvon, J. Ziegler, D. Weiss, and S. D. Ganichev, Phys. Rev. B 95, 201103(R) (2017).

  23. G. M. Minkov, V. Ya. Aleshkin, O. E. Rut, A. A. Sherstobitov, A. V. Germanenko, S. A. Dvoretski, and N. N. Mikhailov, Phys. Rev. B 96, 035310 (2017).

  24. S. Dvoretsky, N. Mikhailov, D. Ikusov, V. Kartashev, A. Kolesnikov, I. Sabinina, Y. G. Sidorov, and V. Shvets, in Methods for Film Synthesis and Coating Procedures (IntechOpen, Rijeke, 2020).

  25. O. E. Raichev, Phys. Rev. B 85, 045310 (2012).

  26. G. V. Budkin and S. A. Tarasenko, Phys. Rev. B 105, L161301 (2022).

  27. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science (Washington, DC, U. S.) 314, 1757 (2006).

    Article  ADS  Google Scholar 

  28. L. G. Gerchikov and A. V. Subashiev, Sov. Phys. Semicond. 23, 1368 (1989).

    Google Scholar 

  29. E. G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C. R. Becker, G. Landwehr, H. Buhmann, and L. W. Molenkamp, Phys. Rev. B 72, 035321 (2005).

  30. R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems, Vol. 191 of Springer Tracts Mod. Phys. (Springer, 2003).

  31. G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974).

    Google Scholar 

  32. J.-M. Jancu, R. Scholz, E. A. de Andrada e Silva, and G. C. L. Rocca, Phys. Rev. B 72, 193201 (2005).

  33. M. V. Durnev, M. M. Glazov, and E. L. Ivchenko, Phys. Rev. B 89, 075430 (2014).

  34. I. L. Aleiner and E. L. Ivchenko, JETP Lett. 55, 692 (1992).

    ADS  Google Scholar 

  35. E. L. Ivchenko, A. Y. Kaminski, and U. Rössler, Phys. Rev. B 54, 5852 (1996).

    Article  ADS  Google Scholar 

  36. Z. W. Lu, D. Singh, and H. Krakauer, Phys. Rev. B 39, 10154 (1989).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project 22-12-00211). G.V.B. acknowledges the support from the “BASIS” foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Durnev.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

This article was prepared for the special issue of Journal of Experimental and Theoretical Physics dedicated to the 95th birthday of Professor E.I. Rashba.

Additional information

Contribution for the JETP special issue in honor of E.I. Rashba’s 95th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durnev, M.V., Budkin, G.V. & Tarasenko, S.A. Splitting of Dirac Cones in HgTe Quantum Wells: Effects of Crystallographic Orientation, Interface-, Bulk-, and Structure-Inversion Asymmetry. J. Exp. Theor. Phys. 135, 540–548 (2022). https://doi.org/10.1134/S106377612210003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612210003X

Navigation