Skip to main content
Log in

Effect of the Quality of Antirelaxation Coating on the Character of Electromagnetically Induced Transparency in Gas Cells

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dependence of the nature of electromagnetically induced transparency (EIT) in gas cells without a buffer gas on the quality of the antirelaxation coating of the walls, i.e., on the probability of relaxation of the internal state of an atom upon collision with this coating, is analyzed. It is found that, in a number of practically important cases, relaxation on the walls has little effect on the contrast of the EIT resonance, and, under certain conditions, even enhances this effect. For a nondegenerate ground state of atoms, the significant difference is analyzed between two schemes for the implementation of EIT in the cases of Stokes and anti-Stokes scattering of probe radiation, as well as between two types of reflection, specular (elastic) and diffuse, when the atom velocity after reflection does not depend on the velocity before the collision but is determined by the wall temperature. Particular attention is paid to the features of the EIT spectra when the nondegeneracy of the excited state of atoms is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. P. Marangos, J. Mod. Opt. 45, 471 (1998).

    Article  ADS  Google Scholar 

  2. M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).

    Article  ADS  Google Scholar 

  3. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  4. I. Novikova, R. L. Walsworth, and Y. Xiao, Laser Photon. Rev. 6, 333 (2012).

    Article  ADS  Google Scholar 

  5. D. Budker, V. Yashchuk, and M. Zolotorev, Phys. Rev. Lett. 81, 5788 (1998).

    Article  ADS  Google Scholar 

  6. D. Budker, L. Hollberg, D. F. Kimball, J. Kitching, S. Pustelny, and V. V. Yashchuk, Phys. Rev. A 71, 012903 (2005).

  7. M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, Phys. Rev. A 72, 023401 (2005).

  8. D. Budker and M. Romalis, Nat. Phys. 3, 227 (2007).

    Article  Google Scholar 

  9. E. B. Aleksandrov and A. K. Vershovskii, Phys. Usp. 52, 605 (2009).

    Article  Google Scholar 

  10. M. V. Balabas, T. Karaulanov, M. P. Ledbetter, and D. Budker, Phys. Rev. Lett. 105, 070801 (2010).

  11. M. V. Balabas, K. Jensen, W. Wasilewski, H. Krauter, L. S. Madsen, J. H. Muller, T. Fernholz, and E. S. Polzik, Opt. Express 18, 5825 (2010).

    Article  ADS  Google Scholar 

  12. E. Breschi, G. Kazakov, C. Schori, G. di Domenico, G. Mileti, A. Litvinov, and B. Matisov, Phys. Rev. A 82, 063810 (2010).

  13. K. Nasyrov, S. Gozzini, A. Lucchesini, C. Marinelli, S. Gateva, S. Cartaleva, and L. Marmugi, Phys. Rev. A 92, 043803 (2015).

  14. M. A. Hafiz, V. Maurice, R. Chutani, N. Passilly, C. Gorecki, S. Guerande, E. de Clercq, and R. Boudot, J. Appl. Phys. 117, 184901 (2015).

  15. H. Chi, W. Quan, J. Zhang, L. Zhao, and J. Fang, Appl. Surf. Sci. 501, 143897 (2020).

  16. S. J. Seltzera and M. V. Romalis, J. Appl. Phys. 106, 114905 (2009).

  17. K. A. Barantsev, S. V. Bozhokin, A. S. Kuraptsev, A. N. Litvinov, and I. M. Sokolov, J. Opt. Soc. Am. B 38, 1613 (2021).

    Article  ADS  Google Scholar 

  18. A. Krasteva, R. K. Nasyrov, N. Petrov, S. Gateva, S. Cartaleva, and K. A. Nasyrov, Optoelectron. Instrum. Proc. 54, 307 (2018).

    Article  Google Scholar 

  19. W. Li, M. Balabas, X. Peng, S. Pustelny, A. Wickenbrock, H. Guo, and D. Budker, J. Appl. Phys. 121, 063104 (2017).

  20. G. Kazakov, B. Matisov, A. Litvinov, and I. Mazets, J. Phys. B 40, 3851 (2007).

    ADS  Google Scholar 

  21. G. A. Kazakov, A. N. Litvinov, B. G. Matisov, V. I. Romanenko, L. P. Yatsenko, and A. V. Romanenko, J. Phys. B 44, 235401 (2011).

  22. M. Klein, M. Hohensee, D. F. Phillips, and R. L. Walsworth, Phys. Rev. A 83, 013826 (2011).

  23. A. Litvinov, G. Kazakov, B. Matisov, and I. Mazets, J. Phys. B 41, 125401 (2008).

  24. S. Knappe and H. G. Robinson, New J. Phys. 12 (6), 1 (2010).

    Article  Google Scholar 

  25. E. N. Pestov, A. N. Besedina, D. E. Pestov, and V. V. Semenov, Appl. Magn. Res. 51, 195 (2020).

    Article  Google Scholar 

  26. S. J. Seltzer and M. V. Romalis, J. Appl. Phys. 106, 114905 (2009).

  27. S. N. Atutov, A. I. Plekhanov, V. A. Sorokin, S. N. Bagayev, M. N. Skvortsov, and A. V. Taichenachev, Eur. Phys. J. D 72, 155 (2018).

    Article  ADS  Google Scholar 

  28. S. N. Atutov, V. A. Sorokin, S. N. Bagayev, M. N. Skvortsov, and A. V. Taichenachev, Eur. Phys. J. D 73, 11 (2019).

    Article  Google Scholar 

  29. M. Bhattarai, V. Bharti, V. Natarajan, A. Sargsyan, and D. Sarkisyan, Phys. Lett. A 383, 91 (2019).

    Article  ADS  Google Scholar 

  30. S. Kobtsev, D. Radnatarov, S. Khripunov, I. Popkov, V. Andryushkov, and T. Steshchenko, J. Opt. Soc. Am. B 36, 2700 (2019).

    Article  ADS  Google Scholar 

  31. A. Krasteva, E. Mariotti, Y. Dancheva, C. Marinelli, L. Marmugi, L. Stiaccini, S. Gozzini, S. Gateva, and S. Cartaleva, J. Contemp. Phys. 55, 383 (2020).

    Article  Google Scholar 

  32. H. Chi, W. Quan, L. Zhang, L. Zhao, and J. Fang, Appl. Surf. Sci. 501, 143897 (2020).

  33. M. Bhattarai, V. Bharti, and V. Natarajan, Sci. Rep. 8, 7525 (2018).

    Article  ADS  Google Scholar 

  34. S. Kobtsev, D. Radnatarov, S. Khripunov, I. Popkov, V. Andryushkov, and T. Steschenko, Proc. SPIE 10548, 1054820 (2018).

  35. Y. Ji, J. Shang, Q. Gan, and L. Wu, in Proceedings of Electronic Components and Technology Conference (2017), Art. No. 7999974, p. 2116.

  36. N. Sekiguchi and A. Hatakeyama, Appl. Phys. B 122, 81 (2016).

    Article  ADS  Google Scholar 

  37. O. Yu. Tretiak, J. W. Blanchard, D. Budker, P. K. Olshin, S. N. Smirnov, and M. V. Balabas, J. Chem. Phys. 144, 094707 (2016).

  38. M. Pellaton, C. Affolderbach, G. Mileti, R. Straessle, Y. Petremand, D. Briand, and N. F. de Rooij, in Proceedings of the European Frequency and Time Forum 2014 (2015), Art. No. 7331561, p. 554.

  39. G. Zhang, L. Wei, M. Wang, and K. Zhao, J. Appl. Phys. 117, 043106 (2015).

  40. R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti, and N. F. de Rooij, Appl. Phys. Lett. 105, 043502 (2014).

  41. Z. Chowdhuri, M. Fertl, M. Horras, K. Kirch, J. Krempel, B. Lauss, A. Mtchedlishvili, D. Rebreyend, S. Roccia, P. Schmidt-Wellenburg, and G. Zsigmond, Appl. Phys. B 115, 257 (2014).

    Article  ADS  Google Scholar 

  42. R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti, and N. F. de Rooij, J. Appl. Phys. 113, 064501 (2013).

  43. T. Bandi, C. Affolderbach, and G. Mileti, J. Appl. Phys. 111, 124906 (2012).

  44. M. Hasegawa, P. Dziuban, L. Nieradko, A. Douahi, C. Gorecki, and V. Giordano, in Proceedings of the 2008 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics OPT MEMS (2008), Art. No. 4607879, p. 162.

  45. K. A. Nasyrov, Optoelectron., Instrum. Data Process. 52, 70 (2016).

    Article  Google Scholar 

  46. S. N. Nikolic, A. J. Krmpot, N. M. Lučic, B. V. Zlatkovic, M. Radonjic, and B. M. Jelenkovic, Phys. Scr. T 157, 014019 (2013).

  47. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, Phys. Rev. Lett. 82, 5229 (1999).

    Article  ADS  Google Scholar 

  48. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, Phys. Rev. Lett. 83, 1767 (1999).

    Article  ADS  Google Scholar 

  49. A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, JETP Lett. 72, 119 (2000).

    Article  ADS  Google Scholar 

  50. A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, Phys. Rev. A 66, 013805 (2002).

  51. L. Ma and G. Raithel, J. Phys. Commun. 4, 095020 (2020).

  52. I. M. Sokolov, D. V. Kupriyanov, and M. D. Havey, J. Exp. Theor. Phys. 112, 246 (2011).

    Article  ADS  Google Scholar 

  53. A. S. Kuraptsev and I. M. Sokolov, Phys. Rev. A 91, 053822 (2015).

  54. N. A. Vasil’ev and A. S. Troshin, Sov. Phys. JETP 98, 1116 (2004).

    Article  ADS  Google Scholar 

  55. A. N. Litvinov and I. M. Sokolov, JETP Lett. 113, 763 (2021).

    Article  Google Scholar 

Download references

Funding

This research was supported by the BASIS Foundation for the Development of Theoretical Physics and Mathematics. The effect of the difference between diffuse and specular reflections from the coating on the EIT spectra was analyzed as part of the State assignment for fundamental research (no. FSEG-2020-0024). The results of the work were obtained with the use of the computational facilities of the Supercomputer Center of Peter the Great St. Petersburg Polytechnic University (http://www.spbstu.ru).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. V. Voloshin or I. M. Sokolov.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voloshin, G.V., Meng, H., Kuraptsev, A.S. et al. Effect of the Quality of Antirelaxation Coating on the Character of Electromagnetically Induced Transparency in Gas Cells. J. Exp. Theor. Phys. 135, 269–276 (2022). https://doi.org/10.1134/S1063776122090163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122090163

Navigation