Skip to main content
Log in

Electromagnetically Induced Transparency in Gas Cells with Antirelaxation Coating

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The features of electromagnetically induced transparency (EIT) in gas cells with antirelaxation coating of the walls are considered. It is shown that the simultaneous effect of the motion of atoms, the finite size of a cell, and the nondegeneracy of the ground state of atoms leads to a number of qualitative phenomena. In particular, even for the simplest three-level lambda scheme with a nondegenerate ground state, a significant difference in the spectra of EIT is revealed and investigated in detail depending on the relation between the frequencies of the probe and control fields, i.e., depending on whether the probe radiation is scattered in the Stokes or anti-Stokes channel. A significant spatial inhomogeneity of the excited low-frequency coherence is observed, which persists for large cells even far from their boundaries. In this case, the EIT resonances formed by atoms in different regions of a cell turn out to be differently shifted in frequency, which causes an additional inhomogeneous broadening of the observed profile. The observed effects are studied as a function of the nature of the accommodation of atoms on the surface of the antirelaxation coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. P. Marangos, J. Mod. Opt. 45, 471 (1998).

    Article  ADS  Google Scholar 

  2. M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).

    Article  ADS  Google Scholar 

  3. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  4. I. Novikova, R. L. Walsworth, and Y. Xiao, Laser Photon. Rev. 6, 333 (2012).

    Article  ADS  Google Scholar 

  5. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, Phys. Rev. Lett. 82, 5229 (1999).

    Article  ADS  Google Scholar 

  6. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, Phys. Rev. Lett. 83, 1767 (1999).

    Article  ADS  Google Scholar 

  7. A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, JETP Lett. 72, 119 (2000).

    Article  ADS  Google Scholar 

  8. A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, Phys. Rev. A 66, 013805 (2002).

  9. L. Ma and G. Raithel, J. Phys. Commun. 4, 095020 (2020).

  10. D. Budker, V. Yashchuk, and M. Zolotorev, Phys. Rev. Lett. 81, 5788 (1998).

    Article  ADS  Google Scholar 

  11. D. Budker, L. Hollberg, D. J. Kimball, J. Kitching, S. Pustelny, and V. V. Yashchuk, Phys. Rev. A 71, 012903 (2005).

  12. M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, Phys. Rev. A 72, 023401 (2005).

  13. D. Budker and M. Romalis, Nat. Phys. 3, 227 (2007).

    Article  Google Scholar 

  14. E. B. Aleksandrov and A. K. Vershovskii, Phys. Usp. 52, 605 (2009).

    Article  Google Scholar 

  15. M. V. Balabas, T. Karaulanov, M. P. Ledbetter, and D. Budker, Phys. Rev. Lett. 105, 070801 (2010).

  16. M. V. Balabas, K. Jensen, W. Wasilewski, H. Krauter, L. S. Madsen, J. H. Muller, T. Fernholz, and E. S. Polzik, Opt. Express 18, 5825 (2010).

    Article  ADS  Google Scholar 

  17. E. Breschi, G. Kazakov, C. Schori, G. di Domenico, G. Mileti, A. Litvinov, and B. Matisov, Phys. Rev. A 82, 063810 (2010).

  18. K. Nasyrov, S. Gozzini, A. Lucchesini, C. Marinelli, S. Gateva, S. Cartaleva, and L. Marmugi, Phys. Rev. A 92, 043803 (2015).

  19. M. A. Hafiz, V. Maurice, R. Chutanil, N. Passilly, C. Gorecki, S. Guerande, E. de Clercq, and R. Boudot, J. Appl. Phys. 117, 184901 (2015).

  20. H. Chi, W. Quan, J. Zhang, L. Zhao, and J. Fang, Appl. Surf. Sci. 501, 143897 (2020).

  21. S. J. Seltzera and M. V. Romalis, J. Appl. Phys. 106, 114905 (2009).

  22. K. A. Barantsev, S. V. Bozhokin, A. S. Kuraptsev, A. N. Litvinov, and I. M. Sokolov, J. Opt. Soc. Am. B 38, 1613 (2021).

    Article  ADS  Google Scholar 

  23. A. Krasteva, R. K. Nasyrov, N. Petrov, S. Gateva, S. Cartaleva, and K. A. Nasyrov, Optoelectron. Instrum. Proc. 54, 307 (2018).

    Article  Google Scholar 

  24. W. Li, M. Balabas, X. Peng, S. Pustelny, A. Wickenbrock, H. Guo, and D. Budker, J. Appl. Phys. 121, 063104 (2017).

  25. G. Kazakov, B. Matisov, A. Litvinov, and I. Mazets, J. Phys. B 40, 3851 (2007).

    ADS  Google Scholar 

  26. G. A. Kazakov, A. N. Litvinov, B. G. Matisov, V. I. Romanenko, L. P. Yatsenko, and A. V. Romanenko, J. Phys. B 44, 235401 (2011).

  27. M. Klein, M. Hohensee, D. F. Phillips, and R. L. Walsworth, Phys. Rev. A 83, 013826 (2011).

  28. A. Litvinov, G. Kazakov, B. Matisov, and I. Mazets, J. Phys. B 41, 125401 (2008).

  29. S. Knappe and H. G. Robinson, New J. Phys. 12 (6), 1 (2010).

    Article  Google Scholar 

  30. E. N. Pestov, A. N. Besedina, D. E. Pestov, and V. V. Semenov, Appl. Magn. Res. 51, 195 (2020).

    Article  Google Scholar 

  31. S. J. Seltzer and M. V. Romalis, J. Appl. Phys. 106, 114905 (2009).

  32. S. N. Atutov, A. I. Plekhanov, V. A. Sorokin, S. N. Bagayev, M. N. Skvortsov, and A. V. Taichenachev, Eur. Phys. J. D 72, 155 (2018).

    Article  ADS  Google Scholar 

  33. S. N. Atutov, V. A. Sorokin, S. N. Bagayev, M. N. Skvortsov, and A. V. Taichenachev, Eur. Phys. J. D 73, 11 (2019).

    Article  Google Scholar 

  34. M. Bhattarai, V. Bharti, V. Natarajan, A. Sargsyan, and D. Sarkisyan, Phys. Lett. A 383, 91 (2019).

    Article  ADS  Google Scholar 

  35. S. Kobtsev, D. Radnatarov, S. Khripunov, I. Popkov, V. Andryushkov, and T. Steshchenko, J. Opt. Soc. Am. B 36, 2700 (2019).

    Article  ADS  Google Scholar 

  36. A. Krasteva, E. Mariotti, Y. Dancheva, C. Marinelli, L. Marmugi, L. Stiaccini, S. Gozzini, S. Gateva, and S. Cartaleva, J. Contemp. Phys. 55, 383 (2020).

    Article  Google Scholar 

  37. H. Chi, W. Quan, J. Zhang, L. Zhao, and J. Fang, Appl. Surf. Sci 501, 143897 (2020).

  38. M. Bhattarai, V. Bharti, and V. Natarajan, Sci. Rep. 8, 7525 (2018).

    Article  ADS  Google Scholar 

  39. S. Kobtsev, D. Radnatarov, S. Khripunov, I. Popkov, V. Andryushkov, and T. Steschenko, Proc. SPIE 10548, 1054820 (2018).

  40. Y. Ji, J. Shang, Q. Gan, and L. Wu, in Proceedings of Electronic Components and Technology Conference (2017), Art. No. 7999974, p. 2116.

  41. N. Sekiguchi and A. Hatakeyama, Appl. Phys. B 122, 81 (2016).

    Article  ADS  Google Scholar 

  42. O. Yu. Tretiak, J. W. Blanchard, D. Budker, P. K. Olshin, S. N. Smirnov, and M. V. Balabas, J. Chem. Phys. 144, 094707 (2016).

  43. M. Pellaton, C. Affolderbach, G. Mileti, R. Straessle, Y. Pétremand, D. Briand, and N. F. de Rooij, in Proceedings of the European Frequency and Time Forum 2014 (2015), Art. No. 7331561, p. 554.

  44. G. Zhang, L. Wei, M. Wang, and K. Zhao, J. Appl. Phys. 117, 043106 (2015).

  45. R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti, and N. F. de Rooij, Appl. Phys. Lett. 105, 043502 (2014).

  46. Z. Chowdhuri, M. Fertl, M. Horras, K. Kirch, J. Krempel, B. Lauss, A. Mtchedlishvili, D. Rebreyend, S. Roccia, P. Schmidt-Wellenburg, and G. Zsigmond, Appl. Phys. B 115, 257 (2014).

    Article  ADS  Google Scholar 

  47. R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti, and N. F. de Rooij, J. Appl. Phys. 113, 064501 (2013).

  48. T. Bandi, C. Affolderbach, and G. Mileti, J. Appl. Phys. 111, 124906 (2012).

  49. M. Hasegawa, P. Dziuban, L. Nieradko, A. Douahi, C. Gorecki, and V. Giordano, in Proceedings of the IEEE/LEOS International Conference on Optical MEMS and Nanophotonics OPTMEMS (2008), Art. No. 4607879, p. 162.

  50. S. N. Nikolic, A. J. Krmpot, N. M. Lučic, B. V. Zlatkovic, M. Radonjic, and B. M. Jelenkovic, Phys. Scr. T 157, 014019 (2013).

  51. I. M. Sokolov, D. V. Kupriyanov, and M. D. Havey, J. Exp. Theor. Phys. 112, 246 (2011).

    Article  ADS  Google Scholar 

  52. N. A. Vasil’ev and A. S. Troshin, Sov. Phys. JETP 98, 1116 (2004).

    Article  ADS  Google Scholar 

  53. A. S. Kuraptsev and I. M. Sokolov, Phys. Rev. A 91, 053822 (2015).

  54. V. V. Batygin and I. M. Sokolov, Phys. Lett. A 108, 29 (1985).

    Article  ADS  Google Scholar 

  55. V. I. Yudin, A. V. Taichenachev, M. Yu. Basalaev, O. N. Prudnikov, and S. N. Bagaev, J. Opt. Soc. Am. B 39, 1979 (2022).

    Article  ADS  Google Scholar 

  56. Ya. A. Fofanov, Proc. SPIE 7993, 79930O-6 (2010).

    Article  ADS  Google Scholar 

  57. Ya. A. Fofanov, in Advances in Optoelectronics Research, Ed. by M. R. Oswald (Nova Sci., USA, 2014), p. 75.

    Google Scholar 

  58. Ya. Fofanov, Eur. Phys. J. WEB of Conf. 220, 01004 (2019).

  59. A. V. Belinsky and M. Kh. Shulman, Phys. Usp. 57, 1022 (2014).

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by the BASIS Foundation for the Development of Theoretical Physics and Mathematics. The influence of the nature of the accommodation of atoms on the surface of the coating on the EIT spectra was analyzed as part of the State assignment for fundamental research (no. FSEG-2020-0024). The results of the work were obtained with the use of the computational facilities of the Supercomputer Center of Peter the Great St. Petersburg Polytechnic University (http://www.spbstu.ru).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Sokolov.

Additional information

Translated by I. Nikitin

APPENDIX A

APPENDIX A

Neglecting the collisions of atoms with each other, we can write the system of equations for the slow amplitudes of the density matrix in the Wigner representation ρ(v, r, t) in the rotating wave approximation as

$$\begin{gathered} {{{\dot {\rho }}}_{{11}}} + {\mathbf{v}} \cdot \nabla {{\rho }_{{11}}} = i(V_{c}^{*}{{\rho }_{{31}}} - {{V}_{c}}{{\rho }_{{13}}}) + {{\gamma }_{{31}}}{{\rho }_{{33}}}, \\ {{{\dot {\rho }}}_{{22}}} + {\mathbf{v}} \cdot \nabla {{\rho }_{{22}}} = i(V_{p}^{*}{{\rho }_{{32}}} - {{V}_{p}}{{\rho }_{{23}}}) + {{\gamma }_{{32}}}{{\rho }_{{33}}}, \\ {{{\dot {\rho }}}_{{12}}} + {\mathbf{v}} \cdot \nabla {{\rho }_{{12}}} = i(V_{c}^{*}{{\rho }_{{32}}} - {{V}_{p}}{{\rho }_{{13}}}) \\ \, + [i({{\Delta }_{p}} - {{\Delta }_{c}} + {\mathbf{q}} \cdot {\mathbf{v}}) - {{\gamma }_{{12}}}]{{\rho }_{{12}}}, \\ \end{gathered} $$
$$\begin{gathered} {{{\dot {\rho }}}_{{13}}} + {\mathbf{v}} \cdot \nabla {{\rho }_{{13}}} = - i(V_{c}^{*}{{\rho }_{{11}}} + V_{p}^{*}{{\rho }_{{12}}} - V_{c}^{*}{{\rho }_{{33}}}) \\ - \,[i({{\Delta }_{c}} - {{{\mathbf{k}}}_{c}} \cdot {\mathbf{v}}) + {{\gamma }_{3}}{\text{/}}2]{{\rho }_{{13}}}, \\ {{{\dot {\rho }}}_{{23}}} + {\mathbf{v}} \cdot \nabla {{\rho }_{{23}}} = - i(V_{c}^{*}{{\rho }_{{21}}} + V_{p}^{*}{{\rho }_{{22}}} - V_{p}^{*}{{\rho }_{{33}}}) \\ - \,[i({{\Delta }_{p}} - {{{\mathbf{k}}}_{p}} \cdot {\mathbf{v}}) + {{\gamma }_{3}}{\text{/}}2]{{\rho }_{{23}}}, \\ {{\rho }_{{11}}} + {{\rho }_{{22}}} + {{\rho }_{{33}}} = 1,\quad {{\rho }_{{ij}}} = \rho _{{ji}}^{*}. \\ \end{gathered} $$
(A.1)

Here we assume that the control field induces transitions only from sublevel |1〉, and the probe field, only from sublevel |2〉. We also use the following notations: Vc = d31Ec/2\(\hbar \); Vp = d32Ep/2\(\hbar \); deg are the dipole moments of the transitions; Ec and Ep are the slow amplitudes of the control and probe fields, respectively; γ3 = γ31 + γ32; q = kckp; Δc = ωc – ω31; and Δp = ωp – ω32. For brevity we omit the arguments of the density matrix. In system (A.1), we also neglected the probabilities of spontaneous transitions between closely spaced levels |1〉 and |2〉.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fofanov, Y.A., Sokolov, I.M. Electromagnetically Induced Transparency in Gas Cells with Antirelaxation Coating. J. Exp. Theor. Phys. 135, 255–263 (2022). https://doi.org/10.1134/S106377612209014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612209014X

Navigation