Skip to main content
Log in

Influence of a Strong Magnetic Field on the AC Transport Properties of Fe/SiO2/n-Si MIS Structure

  • ELECTRONIC PROPERTIES OF SOLIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The ac transport properties of a Fe/SiO2/n-Si MIS structure made in the form of a Schottky diode have been studied in magnetic fields up to 9 T. A shift in the maxima of the temperature dependences of the impedance real part observed in the magnetic field is accompanied by the magnetoimpedance effect and takes place only at a certain relative orientation between the magnetic field and the surface of the sample. It has been found that the magnetoimpedance effect is related to the recharge of impurity states. Impurity state energy Es in the presence and absence of the magnetic field has been calculated. The impurity state energy is a nonlinear function of magnetic field and can be qualitatively characterized in terms of the theory of the Zeeman giant effect in diluted magnetic semiconductors. Other mechanisms of magnetic field influence on ac transport in MIS structures, specifically, on the impurity state recharge, cannot be disregarded either. This points calls for further investigation. Obtained data may provide a deeper insight into the nature of magnetoresistive effects in semiconductors and be used to design new-generation microelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. G. Zhou, B. Wu, X. Liu, et al., Phys. Chem. Chem. Phys. 18, 6509 (2016).

    Article  Google Scholar 

  2. A. Liu, R. Jones, L. Liao, et al., Nature (London, U.K.) 427, 615 (2004).

    Article  ADS  Google Scholar 

  3. R. Chand, D. Han, S. Neethirajan, et al., Sens. Actuators, B 248, 973 (2017).

    Article  Google Scholar 

  4. T. Manago and H. Akinaga, Appl. Phys. Lett. 81, 694 (2002).

    Article  ADS  Google Scholar 

  5. J. Y. Lin and J. G. Hwu, IEEE Trans. Electron Dev. 68, 4189 (2021).

    Article  ADS  Google Scholar 

  6. S. Sasa, M. Ozaki, K. Koike, et al., Appl. Phys. Lett. 89, 53502 (2006).

    Article  Google Scholar 

  7. Z. Zhen, Q.Wang, Y. Qin, et al., Phys. Status Solidi A 219, 2200010 (2022).

  8. R. Yan, D. Gargas, and P. Yang, Nat. Photon. 3, 569 (2009).

    Article  ADS  Google Scholar 

  9. Y. D. Ivanov, T. O. Pleshakova, K. A. Malsagova, et al., Sens. Actuators, B 261, 566 (2018).

    Article  Google Scholar 

  10. M. Benhaliba, Phys. B (Amsterdam, Neth.) 578, 411782 (2020).

  11. H. C. Card and E. H. Rhoderick, J. Phys. D: Appl. Phys. 4, 1589 (1971).

    Article  ADS  Google Scholar 

  12. A. Wittmann, C. H. Möller, O. Kronenwerth, et al., J. Phys. Condens. Matter 16, 5645 (2004).

    Article  Google Scholar 

  13. S. S. Wang, Y. Zhang, J. Y. Jiao, et al., J. Phys. D: Appl. Phys. 51, 455001 (2018).

  14. M. H. Phan and H. X. Peng, Prog. Mater. Sci. 53, 323 (2008).

    Article  Google Scholar 

  15. A. Kumar and P. C. Srivastava, J. Electron. Mater. 43, 381 (2014).

    Article  ADS  Google Scholar 

  16. A. K. Fedotov, U. E. Gumiennik, V. A. Skuratov, et al., Phys. E: (Amsterdam, Neth.) 138, 115047 (2022).

  17. A. Druzhinin, I. Ostrovskii, I. Kogut, et al., Mater. Sci. Semicond. Process. 31, 2619 (2015).

    Article  Google Scholar 

  18. N. V. Volkov, A. S. Tarasov, D. A. Smolyakov, et al., J. Magn. Magn. Mater. 383, 69 (2015).

    Article  ADS  Google Scholar 

  19. D. A. Smolyakov, A. S. Tarasov, I. A. Yakovlev, et al., Thin Solid Films 671, 18 (2019).

    Article  ADS  Google Scholar 

  20. D. A. Smolyakov, A. S. Tarasov, I. A. Yakovlev, and M. Volochaev, Semiconductors 53, 1964 (2019).

    Article  ADS  Google Scholar 

  21. D. A. Smolyakov, A. S. Tarasov, M. A. Bondarev, et al., Mater. Sci. Semicond. 126, 105663 (2021).

  22. A. Ishizaka and Y. Shiraki, J. Electrochem. Soc. 133, 666 (1986).

    Article  ADS  Google Scholar 

  23. A. R. Peaker, V. P. Markevich, and J. Coutinho, J. Appl. Phys. 123, 161559 (2018).

  24. D. L. Losee, J. Appl. Phys. 46, 2204 (1975).

    Article  ADS  Google Scholar 

  25. S. M. Sze and K. Ng. Kwok, Physics of Semiconductor Devices (Wiley, New York, 2021).

    Google Scholar 

  26. E. Prati, K. Kumagai and M. Hori, Sci. Rep. 6, 19704 (2016).

    Article  ADS  Google Scholar 

  27. T. Ferrus, R. George, C. H. Barnes, et al., Phys. B (Amsterdam, Neth.) 400, 218 (2007).

  28. F. F. Fang and A. B. Fowler, Phys. Rev. 169, 619 (1967).

    Article  ADS  Google Scholar 

  29. A. Hartstein and A. B. Fowler, Phys. Rev. Lett. 34, 1435 (1975).

    Article  ADS  Google Scholar 

  30. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 2013).

    Google Scholar 

  31. T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014).

    Article  ADS  Google Scholar 

  32. T. Dietl, A. Haury, and Y. M. d’Aubigné, Phys. Rev. B 55, 3347 (1997).

    Article  ADS  Google Scholar 

  33. C. Benoit a la Guillaume, D. Scalbert, and T. Dietl, Phys. Rev. B 46, 9853 (1992).

    Article  ADS  Google Scholar 

  34. R. L. Aggarwal, S. N. Jasperson, P. Becla, et al., Phys. Rev. B 34, 5894 (1986).

    Article  ADS  Google Scholar 

  35. C. Li, S. C. Hsu, J. X. Lin, et al., J. Am. Chem. Soc. 142, 20616 (2020).

    Article  Google Scholar 

  36. J. Jiang, L. A. T. Nguyen, T. D. Nguyen, et al., Phys. Rev. B 103, 014441 (2021).

  37. M. V. Durnev, M. M. Glazov, and E. L. Ivchenko, Phys. E (Amsterdam, Neth.) 44, 797 (2012).

  38. R. Ruskov, M. Veldhorst, A. S. Dzurak, et al., Phys. Rev. B 427, 245424 (2018).

Download references

ACKNOWLEDGMENTS

The authors thank the administration of the Collective Use Center at the Krasnoyarsk Scientific Center (Siberian Division, Russian Academy of Sciences) for assistance. The authors also thank D.A. Balaev for valuable discussion and M.N. Volochaev for submission of PEM images.

Funding

This study was supported by the Russian Foundation for Basic Research, Krasnoyarsk Region government, and Krasnoyarsk Region Foundation for research-and-engineering activity (grant no. 20-42-243007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Bondarev.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolyakov, D.A., Rautskii, M.V., Bondarev, I.A. et al. Influence of a Strong Magnetic Field on the AC Transport Properties of Fe/SiO2/n-Si MIS Structure. J. Exp. Theor. Phys. 135, 377–382 (2022). https://doi.org/10.1134/S1063776122090102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122090102

Navigation