Abstract
The ac transport properties of a Fe/SiO2/n-Si MIS structure made in the form of a Schottky diode have been studied in magnetic fields up to 9 T. A shift in the maxima of the temperature dependences of the impedance real part observed in the magnetic field is accompanied by the magnetoimpedance effect and takes place only at a certain relative orientation between the magnetic field and the surface of the sample. It has been found that the magnetoimpedance effect is related to the recharge of impurity states. Impurity state energy Es in the presence and absence of the magnetic field has been calculated. The impurity state energy is a nonlinear function of magnetic field and can be qualitatively characterized in terms of the theory of the Zeeman giant effect in diluted magnetic semiconductors. Other mechanisms of magnetic field influence on ac transport in MIS structures, specifically, on the impurity state recharge, cannot be disregarded either. This points calls for further investigation. Obtained data may provide a deeper insight into the nature of magnetoresistive effects in semiconductors and be used to design new-generation microelectronic devices.
Similar content being viewed by others
REFERENCES
G. Zhou, B. Wu, X. Liu, et al., Phys. Chem. Chem. Phys. 18, 6509 (2016).
A. Liu, R. Jones, L. Liao, et al., Nature (London, U.K.) 427, 615 (2004).
R. Chand, D. Han, S. Neethirajan, et al., Sens. Actuators, B 248, 973 (2017).
T. Manago and H. Akinaga, Appl. Phys. Lett. 81, 694 (2002).
J. Y. Lin and J. G. Hwu, IEEE Trans. Electron Dev. 68, 4189 (2021).
S. Sasa, M. Ozaki, K. Koike, et al., Appl. Phys. Lett. 89, 53502 (2006).
Z. Zhen, Q.Wang, Y. Qin, et al., Phys. Status Solidi A 219, 2200010 (2022).
R. Yan, D. Gargas, and P. Yang, Nat. Photon. 3, 569 (2009).
Y. D. Ivanov, T. O. Pleshakova, K. A. Malsagova, et al., Sens. Actuators, B 261, 566 (2018).
M. Benhaliba, Phys. B (Amsterdam, Neth.) 578, 411782 (2020).
H. C. Card and E. H. Rhoderick, J. Phys. D: Appl. Phys. 4, 1589 (1971).
A. Wittmann, C. H. Möller, O. Kronenwerth, et al., J. Phys. Condens. Matter 16, 5645 (2004).
S. S. Wang, Y. Zhang, J. Y. Jiao, et al., J. Phys. D: Appl. Phys. 51, 455001 (2018).
M. H. Phan and H. X. Peng, Prog. Mater. Sci. 53, 323 (2008).
A. Kumar and P. C. Srivastava, J. Electron. Mater. 43, 381 (2014).
A. K. Fedotov, U. E. Gumiennik, V. A. Skuratov, et al., Phys. E: (Amsterdam, Neth.) 138, 115047 (2022).
A. Druzhinin, I. Ostrovskii, I. Kogut, et al., Mater. Sci. Semicond. Process. 31, 2619 (2015).
N. V. Volkov, A. S. Tarasov, D. A. Smolyakov, et al., J. Magn. Magn. Mater. 383, 69 (2015).
D. A. Smolyakov, A. S. Tarasov, I. A. Yakovlev, et al., Thin Solid Films 671, 18 (2019).
D. A. Smolyakov, A. S. Tarasov, I. A. Yakovlev, and M. Volochaev, Semiconductors 53, 1964 (2019).
D. A. Smolyakov, A. S. Tarasov, M. A. Bondarev, et al., Mater. Sci. Semicond. 126, 105663 (2021).
A. Ishizaka and Y. Shiraki, J. Electrochem. Soc. 133, 666 (1986).
A. R. Peaker, V. P. Markevich, and J. Coutinho, J. Appl. Phys. 123, 161559 (2018).
D. L. Losee, J. Appl. Phys. 46, 2204 (1975).
S. M. Sze and K. Ng. Kwok, Physics of Semiconductor Devices (Wiley, New York, 2021).
E. Prati, K. Kumagai and M. Hori, Sci. Rep. 6, 19704 (2016).
T. Ferrus, R. George, C. H. Barnes, et al., Phys. B (Amsterdam, Neth.) 400, 218 (2007).
F. F. Fang and A. B. Fowler, Phys. Rev. 169, 619 (1967).
A. Hartstein and A. B. Fowler, Phys. Rev. Lett. 34, 1435 (1975).
B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 2013).
T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014).
T. Dietl, A. Haury, and Y. M. d’Aubigné, Phys. Rev. B 55, 3347 (1997).
C. Benoit a la Guillaume, D. Scalbert, and T. Dietl, Phys. Rev. B 46, 9853 (1992).
R. L. Aggarwal, S. N. Jasperson, P. Becla, et al., Phys. Rev. B 34, 5894 (1986).
C. Li, S. C. Hsu, J. X. Lin, et al., J. Am. Chem. Soc. 142, 20616 (2020).
J. Jiang, L. A. T. Nguyen, T. D. Nguyen, et al., Phys. Rev. B 103, 014441 (2021).
M. V. Durnev, M. M. Glazov, and E. L. Ivchenko, Phys. E (Amsterdam, Neth.) 44, 797 (2012).
R. Ruskov, M. Veldhorst, A. S. Dzurak, et al., Phys. Rev. B 427, 245424 (2018).
ACKNOWLEDGMENTS
The authors thank the administration of the Collective Use Center at the Krasnoyarsk Scientific Center (Siberian Division, Russian Academy of Sciences) for assistance. The authors also thank D.A. Balaev for valuable discussion and M.N. Volochaev for submission of PEM images.
Funding
This study was supported by the Russian Foundation for Basic Research, Krasnoyarsk Region government, and Krasnoyarsk Region Foundation for research-and-engineering activity (grant no. 20-42-243007).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by V. Isaakyan
Rights and permissions
About this article
Cite this article
Smolyakov, D.A., Rautskii, M.V., Bondarev, I.A. et al. Influence of a Strong Magnetic Field on the AC Transport Properties of Fe/SiO2/n-Si MIS Structure. J. Exp. Theor. Phys. 135, 377–382 (2022). https://doi.org/10.1134/S1063776122090102
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063776122090102