Skip to main content
Log in

T-Violation in Neutrino Oscillations

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze the T-invariance violation in probabilities of flavor transitions and neutrino spin rotation in a dense medium in an electromagnetic field. Since the electromagnetic field and the potentials of interaction with the medium appear in the wave equation for the neutrino, the model considered here is a theory with Lorentz-invariance violation. For such models, the conditions for the CPT theorem are not satisfied, and T-invariance violation is not necessarily a consequence of CP invariance violation. We have obtained the sufficient condition for T-invariance violation, which implies that T-symmetry can be violated not only because of the presence of a CP-violating phase in the mixing matrix, but also due to simultaneous influence of the medium and the electromagnetic field. We have obtained the probabilities of spin–flavor transitions of the neutrino in the three-flavor model with account for neutrino diagonal magnetic moments and the interaction with the medium only via neutral currents. Studying the explicit form of the probabilities, we conclude that the transition probabilities for right-handed antineutrinos in a medium consisting of antiparticles differ from the transition probabilities for left-handed neutrinos in a medium of particles only in the sign of the T-violating term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

  2. W. Pauli, in Niels Bohr and the Development of Physics (McGraw-Hill, New York, 1955).

    MATH  Google Scholar 

  3. R. Jost, Helvet. Phys. Acta 30, 409 (1957).

    Google Scholar 

  4. T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).

    Article  ADS  Google Scholar 

  5. C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Phys. Rev. 105, 1413 (1957).

    Article  ADS  Google Scholar 

  6. J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138 (1964).

    Article  ADS  Google Scholar 

  7. B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 93, 131801 (2004).

  8. Y. Chao et al. (Belle Collab.), Phys. Rev. Lett. 93, 191802 (2004).

  9. A. D. Sakharov, Sov. Phys. JETP Lett. 5, 24 (1967).

    ADS  Google Scholar 

  10. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

    Article  ADS  Google Scholar 

  11. C. Jarlskog, Z. Phys. C 29, 491 (1985).

    Article  ADS  Google Scholar 

  12. M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).

    Article  ADS  Google Scholar 

  13. M. Trodden, Rev. Mod. Phys. 71, 1463 (1999).

    Article  ADS  Google Scholar 

  14. S. Davidson, E. Nardi, and Y. Nir, Phys. Rep. 466, 105 (2008).

    Article  ADS  Google Scholar 

  15. B. M. Pontekorvo, Sov. Phys. JETP 6, 429 (1957).

    ADS  Google Scholar 

  16. Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).

    Article  ADS  Google Scholar 

  17. C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford Univ. Press, New York, 2007).

    Book  Google Scholar 

  18. A. V. Chukhnova and A. E. Lobanov, Phys. Rev. D 105, 073010 (2022).

  19. V. A. Naumov, Int. J. Mod. Phys. D 1, 379 (1992).

    Article  ADS  Google Scholar 

  20. E. Akhmedov, P. Huber, M. Lindner, and T. Ohlsson, Nucl. Phys. B 608, 394 (2001).

    Article  ADS  Google Scholar 

  21. S. T. Petcov and Ye-Ling Zhou, Phys. Lett. B 785, 95 (2018).

    Article  ADS  Google Scholar 

  22. A. E. Lobanov and A. V. Chukhnova, Mosc. Univ. Phys. Bull. 72, 454 (2017).

    Article  ADS  Google Scholar 

  23. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).

    Article  ADS  Google Scholar 

  24. P. B. Pal and T. N. Pham, Phys. Rev. D 40, 259 (1989).

    Article  ADS  Google Scholar 

  25. J. F. Nieves, Phys. Rev. D 40, 866 (1989).

    Article  ADS  Google Scholar 

  26. W. H. Furry, Phys. Rev. 81, 115 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  27. W. Pauli, Rev. Mod. Phys. 13, 203 (1941).

    Article  ADS  Google Scholar 

  28. K. Fujikawa and R. E. Shrock, Phys. Rev. Lett. 45, 963 (1980).

    Article  ADS  Google Scholar 

  29. R. E. Shrock, Nucl. Phys. B 206, 359 (1982).

    Article  ADS  Google Scholar 

  30. A. V. Chukhnova and A. E. Lobanov, Phys. Rev. D 101, 013003 (2020).

  31. S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2, 1285 (1970).

    Article  ADS  Google Scholar 

  32. A. E. Lobanov, Dokl. Phys. 50, 286 (2005).

    Article  ADS  Google Scholar 

  33. A. Studenikin and A. Ternov, Phys. Lett., B 608, 107 (2005).

    Article  ADS  Google Scholar 

  34. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 1989; Pergamon, Oxford, 1982).

  35. N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Nauka, Moscow, 1973; Wiley, New York, 1980).

  36. A. E. Lobanov, Ann. Phys. 403, 82 (2019).

    Article  ADS  Google Scholar 

  37. A. E. Lobanov, Theor. Math. Phys. 192, 1000 (2017).

    Article  Google Scholar 

  38. J. von Neumann, Nachr. Gesellsch. Wissensch. Göttingen, Math.-Phys. Kl. 1927, 245 (1927).

    Google Scholar 

  39. A. V. Chukhnova and A. E. Lobanov, Eur. Phys. J. C 81, 821 (2021).

    Article  ADS  Google Scholar 

  40. J. E. Campbell, Proc. London Math. Soc. s1-28, 381 (1896).

  41. E. V. Arbuzova, A. E. Lobanov, and E. M. Murchikova, Phys. Rev. D 81, 045001 (2010).

  42. H. A. Kramers, Proc. K. Ned. Akad. Wet. 40, 814 (1937).

    Google Scholar 

  43. S. M. Carroll, G. B. Field, and R. Jackiw, Phys. Rev. D 41, 1231 (1990).

    Article  ADS  Google Scholar 

  44. D. Colladay and V. A. Kostelecký, Phys. Rev. D 55, 6760 (1997).

    Article  ADS  Google Scholar 

  45. S. Coleman and S. L. Glashow, Phys. Rev. D 59, 116008 (1999).

  46. P. A. M. Dirac, R. Peierls, and M. H. L. Pryce, Proc. Cambridge Phil. Soc. 38, 193 (1942).

    Article  ADS  Google Scholar 

  47. A. E. Lobanov, Russ. Phys. J. 59, 1891 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Borisov, I.P. Volobuev, and V.Ch. Zhukovskii for fruitful discussions.

Funding

This study was supported by the Foundation for the Development of Theoretical Physics and Mathematics “Basis” (project no. 19-2-6-100-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. E. Lobanov or A. V. Chukhnova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobanov, A.E., Chukhnova, A.V. T-Violation in Neutrino Oscillations. J. Exp. Theor. Phys. 135, 312–319 (2022). https://doi.org/10.1134/S1063776122090060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122090060

Navigation