Skip to main content
Log in

Temperature Evolution of Magnetic Resonance Spectra in Metal–Insulator Nanogranular Composites with Paramagnetic Ions in an Insulating Matrix

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Films of metal–insulator nanogranular (CoFeB)x(LiNbO3)100 – x and (CoFeB)x(Al2O3)100 – x composites with different content x of a ferromagnetic metallic phase have been investigated by the magnetic resonance method in a wide temperature range (4.2–360 K). The systems under study are characterized by a high concentration of paramagnetic Fe and Co ions, which are dispersed in the insulating medium between ferromagnetic CoFeB granules. The experimental spectra of these systems show a peak of ferromagnetic resonance associated with the ferromagnetic granule array and an additional less intense absorption peak associated with the electron paramagnetic resonance of Fe3+ ions in the insulating matrix. It has been found that the position and intensity of this peak depend on the composition of the system and temperature. The observed behavior is explained by existence of exchange interaction between magnetic ions and ferromagnetic granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. V. Rylkov, A. V. Emelyanov, S. N. Nikolaev, K. E. Nikiruy, A. V. Sitnikov, E. A. Fadeev, V. A. Demin, and A. B. Granovsky, J. Exp. Theor. Phys. 131, 160 (2020).

    Article  ADS  Google Scholar 

  2. V. V. Rylkov, S. N. Nikolaev, V. A. Demin, A. V. Emelyanov, A. V. Sitnikov, K. E. Nikiruy, V. A. Levanov, M. Yu. Presnyakov, A. N. Taldenkov, A. L. Vasilyev, K. Yu. Chernoglazov, A. S. Vedeneev, Yu. E. Kalinin, A. B. Granovsky, V. V. Tugushev, and A. S. Bugaev, J. Exp. Theor. Phys. 126, 353 (2018).

    Article  ADS  Google Scholar 

  3. V. V. Rylkov, S. N. Nikolaev, K. Yu. Chernoglazov, V. A. Demin, A. V. Sitnikov, M. Yu. Presnyakov, A. L. Vasiliev, N. S. Perov, A. S. Vedeneev, Yu. E. Kalinin, V. V. Tugushev, and A. B. Granovsky, Phys. Rev. B 95, 144202 (2017).

  4. V. V. Rylkov, A. V. Sitnikov, S. N. Nikolaev, V. A. Demin, A. N. Taldenkov, M. Yu. Presnyakov, A. V. Emelyanov, A. L. Vasiliev, Yu. E. Kalinin, A. S. Bugaev, V. V. Tugushev, and A. B. Granovsky, J. Magn. Magn. Mater. 459, 197 (2018).

    Article  ADS  Google Scholar 

  5. V. V. Rylkov, A. B. Drovosekov, A. N. Taldenkov, S. N. Nikolaev, O. G. Udalov, A. V. Emelyanov, A. V. Sitnikov, K. Yu. Chernoglazov, V. A. Demin, O. A. Novodvorskii, A. S. Vedeneev, and A. S. Bugaev, J. Exp. Theor. Phys. 128, 115 (2019).

    Article  ADS  Google Scholar 

  6. A. B. Drovosekov, N. M. Kreines, A. S. Barkalova, S. N. Nikolaev, V. V. Rylkov, and A. V. Sitnikov, J. Magn. Magn. Mater. 495, 165875 (2020).

  7. A. B. Drovosekov, N. M. Kreines, A. S. Barkalova, S. N. Nikolaev, A. V. Sitnikov, and V. V. Rylkov, JETP Lett. 112, 84 (2020).

    Article  ADS  Google Scholar 

  8. A. B. Drovosekov, N. M. Kreines, O. A. Kovalev, A. V. Sitnikov, S. N. Nikolaev, and V. V. Rylkov, J. Exp. Theor. Phys. 134, 725 (2022).

    Article  ADS  Google Scholar 

  9. T. Castner, Jr., G. S. Newell, W. C. Holton, and C. P. Slichter, J. Chem. Phys. 32, 668 (1960).

    Article  ADS  Google Scholar 

  10. H. H. Wickman, M. P. Klein, and D. A. Shirley, J. Chem. Phys. 42, 2113 (1965).

    Article  ADS  Google Scholar 

  11. Ya. G. Klyava, EPR Spectroscopy of Disordered Solids (Zinatne, Riga, 1988) [in Russian].

    Google Scholar 

  12. I. Ardelean, M. Peteanu, V. Simon, S. Filip, F. Ciorcas, and I. Todor, J. Magn. Magn. Mater. 196197, 257 (1999).

    Article  ADS  Google Scholar 

  13. V. N. Kondratyev and H. O. Lutz, Phys. Rev. Lett. 81, 4508 (1998).

    Article  ADS  Google Scholar 

  14. J. Faure-Vincent, C. Tiusan, C. Bellouard, E. Popova, M. Hehn, F. Montaigne, and A. Schuhl, Phys. Rev. Lett. 89, 107206 (2002).

  15. T. Katayama, S. Yuasa, J. Velev, M. Ye. Zhuravlev, S. S. Jaswal, and E. Y. Tsymbal, Appl. Phys. Lett. 89, 112503 (2006).

  16. P. Bruno, Phys. Rev. B 52, 411 (1995).

    Article  ADS  Google Scholar 

  17. J. C. Slonczewski, J. Magn. Magn. Mater. 150, 13 (1995).

    Article  ADS  Google Scholar 

  18. Yu. E. Kalinin, A. N. Remizov, and A. V. Sitnikov, Phys. Solid State 46, 2146 (2004).

    Article  ADS  Google Scholar 

  19. M. Ye. Zhuravlev, E. Y. Tsymbal, and A. V. Vedyayev, Phys. Rev. Lett. 94, 026806 (2005).

Download references

Funding

The work was carried out within the framework of a state assignment and was financially supported by the Russian Science Foundation (project no. 22-29-00392) in part of studying the magnetic resonance and electrophysical properties of nanocomposite samples. The synthesis of nanocomposite films was supported by the Russian Foundation for Basic Research (project no. 19-29-03022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Drovosekov.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drovosekov, A.B., Kreines, N.M., Kovalev, O.A. et al. Temperature Evolution of Magnetic Resonance Spectra in Metal–Insulator Nanogranular Composites with Paramagnetic Ions in an Insulating Matrix. J. Exp. Theor. Phys. 135, 372–376 (2022). https://doi.org/10.1134/S1063776122090047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122090047

Navigation