Skip to main content
Log in

Study of the 3H(1H, γ)4He Reaction in the Energy Range 12–34 keV

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The study of the 3H(1H, γ)4He reaction is of relevance for both nuclear physics and nuclear astrophysics. In nuclear astrophysics, more accurate data should be obtained on the rate of primordial nucleosynthesis reactions that lead to the production of 4He. In nuclear physics, there are theoretical models in which the behavior of the cross section and the S-factor of this reaction in the energy range of the order of tens of keV are in poor agreement with experiment. Thereby, more accurate experimental study of S-factor behavior should be performed in the astrophysical energy range. The experimentally obtained values of the yields for various energies of 1H+ ions were used to describe the behavior of the 3H(1H, γ)4He reaction S-factor depending on the energy. As a result, the accuracy of determination of the S-factor of the 3H(1H, γ)4He reaction has been improved several times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. C. A. Bertulani and T. Kajino, Prog. Part. Nucl. Phys. 89, 56 (2016). https://doi.org/10.1016/j.ppnp.2016.04.001

    Article  ADS  Google Scholar 

  2. R. H. Cyburt, B. D. Fields, K. A. Olive, and T. H. Yeh, Rev. Mod. Phys. 88, 015004 (2016). https://doi.org/10.1103/RevModPhys.88.015004

  3. P. D. Serpico, S. Esposito, F. Iocco, G. Mangano, G. Miele, and O. Pisanti, J. Cosmol. Astropart. Phys. 2004 (2004). https://iopscience.iop.org/article/10.1088/1475-7516/2004/12/010

  4. C. Pitrou, A. Coc, J.-Ph. Uzan, and E. Vangioni, Phys. Rep. 754, 1 (2018). https://doi.org/10.1016/j.physrep.2018.04.005

    Article  ADS  MathSciNet  Google Scholar 

  5. B. D. Fields, K. A. Olive, Ts.-H. Yehc, and Ch. Youngd, J. Cosmol. Astropart. Phys., No. 03, 010 (2020). https://doi.org/10.1088/1475-7516/2020/03/010

  6. Planck Collab., arXiv: 1807.06209.

  7. R. S. de Souza, Ch. Iliadis, and A. Coc, Astrophys. J. 872, 75 (2019). https://doi.org/10.3847/1538-4357/aafda9

    Article  ADS  Google Scholar 

  8. R. S. de Souza, S. Reece Boston, A. Coc, and Ch. Iliadis, Phys. Rev. C 99, 014619 (2019). https://doi.org/10.1103/PhysRevC.99.014619

  9. C. Pitrou and M. Pospelov, Phys. Rev. C 102, 015803 (2020). https://doi.org/10.1103/PhysRevC.102.015803

  10. B. Dubovichenko, A. V. Dzhazairov-Kakhramanov, and N. V. Afanasyeva, Nucl. Phys. A 963, 52 (2017). https://doi.org/10.1016/j.nuclphysa.2017.04.006

    Article  ADS  Google Scholar 

  11. D. S. Firak, A. J. Krasznahorkay, M. Csatlós, et al., EPJ Web of Conf. 232, 04005 (2020).

  12. A. J. Krasznahorkay et al., Phys. Rev. Lett. 116, 042501 (2016).

  13. E. E. Salpeter, Phys. Rev. 88, 547 (1952).

    Article  ADS  Google Scholar 

  14. C. E. Rolfs and W. S. Rodney, Cauldrons in the Cosmos (Univ. of Chicago Press, Chicago, 1988).

    Google Scholar 

  15. M. Viviani, L. Girlanda, A. Kievsky, and L. E. Marcucci, Phys. Rev. C 102, 034007 (2020). https://doi.org/10.1103/PhysRevC.102.034007

  16. J. E. Perry and S. J. Bame, Phys. Rev. 99, 1368 (1955).

    Article  ADS  Google Scholar 

  17. K. I. Hahn, C. R. Brune, and R. W. Kavanagh, Phys. Rev. C 51, 1624 (1995). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.51.1624.

    Article  ADS  Google Scholar 

  18. R. S. Canon, S. O. Nelson, K. Sabourov, et al., Phys. Rev. C 65, 044008 (2002). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.65.044008.

  19. V. A. Varlachev, G. N. Dudkin, B. A. Nechaev, F. M. Pen’kov, M. Filipowicz, A. V. Philippov, D. S. Flusova, D. K. Chumakov, and E. N. Shuvalov, JETP Lett. 113, 231 (2021). https://doi.org/10.1134/S0021364021040111

    Article  ADS  Google Scholar 

  20. V. M. Bystritsky, V. V. Gerasimov, A. R. Krylov, S. S. Parzhitskii, P. S. Ananin, G. N. Dudkin, V. L. Kaminskii, B. A. Nechaev, V. N. Padalko, A. V. Petrov, G. A. Mesyats, M. Filipowicz, J. Wozniak, and Vit. M. Bystritskii, Eur. Phys. J. A 36, 151 (2008). https://doi.org/10.1140/epja/i2008-10588-3

    Article  ADS  Google Scholar 

  21. V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, M. Filipowicz, S. Gazi, J. Hurane, A. P. Kobzev, G. A. Mesyats, B. A. Nechaev, V. N. Padalko, S. S. Parzhitskii, F. M. Pen’kov, A. V. Philippov, V. L. Kaminskii, Yu. Zh. Tuleushev, and J. Wozniakh, Nucl. Phys. A 889, 93 (2012). https://doi.org/10.1016/j.nuclphysa.2012.07.001

    Article  ADS  Google Scholar 

  22. V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, B. A. Nechaev, and V. N. Padalko, Phys. Part. Nucl. 48, 659 (2017). https://doi.org/10.1134/S1063779617040025

    Article  Google Scholar 

  23. Metal Hydrides, Ed. by W. M. Mueller (Academic, New York, 1968).

    Google Scholar 

  24. J. F. Ziegler and J. P. Biersack, Computer Code SRIM (2011). www.srim.org.

  25. V. M. Bystritsky, V. A. Varlachev, G. N. Dudkin, A. S. Nurkin, B. A. Nechaev, V. N. Padalko, F. M. Penkov, Y. Z. Tuleushev, M. Filipovich, and A. V. Filippov, J. Exp. Theor. Phys. 125, 741 (2017). https://doi.org/10.1134/S1063776117100041

    Article  ADS  Google Scholar 

  26. S. Croft, Nucl. Instrum. Methods Phys. Res. 281, 103 (1989).

    Article  ADS  Google Scholar 

  27. D. E. Groom, N. V. Mokhov, and S. Striganov, At. Data Nucl. Data Tables 76, 183 (2001).

    Article  ADS  Google Scholar 

  28. D. T. Casey, J. A. Frenje, M. Gatu Johnson, et al., Phys. Rev. Lett. 109, 025003 (2012). https://doi.org/10.1103/PhysRevLett.109.025003

  29. C. R. Brune, J. A. Caggiano, D. B. Sayre, et al., Phys. Rev. C 92, 014003 (2015). https://doi.org/10.1103/PhysRevC.92.014003

  30. https://www-nds.iaea.org ENDF/B-VIII/.

  31. H. R. Vega-Carrilloa, E. Manzanares-Acuna, A. M. Becerra-Ferreiro, and A. Carrillo-Nuneza, Appl. Radiat. Isotopes 57, 167 (2002). http://cantera.reduaz.mx/_rvega.

    Article  Google Scholar 

  32. R. B. Firestone and V. S. Shirley, Table of Isotopes, 8th ed. (Wiley, New York, 1998).

    Google Scholar 

  33. V. M. Bystritsky, G. N. Dudkin, A. R. Krylov, S. Gazi, J. Huran, B. A. Nechaev, V. N. Padalko, A. B. Sadovsky,Yu. Zh. Tuleushev, M. Filipowicz, and A. V. Philippov, Nucl. Instrum. Methods Phys. Res., Sect. A 825, 24 (2016). https://doi.org/10.1016/j.nima.2016.04.034

    Article  Google Scholar 

  34. A. P. Kobzev, J. Huran, D. Maczka, and M. Turek, Vacuum 83, S124 (2009). https://doi.org/10.1016/j.vacuum.2009.01.042

    Article  ADS  Google Scholar 

  35. M. Filipowicz, V. M. Bystritsky, G. N. Dudkin, F. M. Penk’ov, and A. V. Philippov, Int. J. Mod. Phys. E 21, 1250089 (2012).

  36. V. M. Bystritsky and F. M. Pen’kov, Phys. At. Nucl. 66, 75 (2003).

    Article  Google Scholar 

  37. V. M. Bystritsky, V. V. Gerasimov, A. R. Krylov, S. S. Parzhitskii, P. S. Ananin, G. N. Dudkin, V. L. Kaminskii, B. A. Nechaev, V. N. Padalko, A. V. Petrov, G. A. Mesyats, M. Filipowicz, J. Wozniak, and Vit. M. Bystritskii, Nucl. Instrum. Methods Phys. Res., Sect. A 595, 543 (2008). https://doi.org/10.1016/j.nima.2008.07.152

    Article  Google Scholar 

  38. F. E. James, Statistical Methods in Experimental Physics, 2nd ed. (World Scientific, Singapore, 2006).

    Book  Google Scholar 

  39. V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, M. Filipowicz, S. Gazi, J. Huran, G. A. Mesyats, B. A. Nechaev, V. N. Padalko, S. S. Parzhitskii, F. M. Pen’kov, A. V. Philippov, and Y. Z. Tuleushev, JETP Lett. 99, 497 (2014). https://doi.org/10.1134/S0021364014090033

    Article  ADS  Google Scholar 

  40. S. Dubovichenko, A. Dzhazairov-Kakhramanov, and N. Burkova, Int. J. Mod. Phys. E 28, 1930004 (2019). https://doi.org/10.1142/S0218301319300042

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.P. Kobzev for measuring the atomic concentrations of tritium, titanium, and impurities in the titanium tritide target. Experimental measurements were carried out at Tomsk Polytechnic University within the framework of the Competitiveness Enhancement Program of Tomsk Polytechnic University, TPU grant CEP 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Philippov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varlachev, V.A., Dudkin, G.N., Nechaev, B.A. et al. Study of the 3H(1H, γ)4He Reaction in the Energy Range 12–34 keV. J. Exp. Theor. Phys. 135, 291–303 (2022). https://doi.org/10.1134/S1063776122080143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122080143

Navigation