Skip to main content
Log in

The Casimir Effect in Bose–Einstein Condensate Mixtures Confined by a Parallel Plate Geometry in the Improved Hartree–Fock Approximation

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

By means of the Cornwall–Jackiw–Tomboulis effective potential formalism, the Casimir effect in binary Bose–Einstein condensate mixtures is investigated. The study conditions are that the mixtures are confined between two parallel plates at zero temperature and within the improved Hartree–Fock approximation featuring higher-order terms in the momentum integrals. Our results show that both effective masses and order parameters strongly depend on the distance between the two plates. The Casimir energy and resulting Casimir force are scrutinized, confirming that the contribution of the higher-order terms of the momentum integrals is significant. Importantly, the Casimir force is proved to be non-zero in limit of the full strong segregation, which is an acceptable answer for the controversial problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).

    Google Scholar 

  2. F. Chen, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen, Phys. Rev. B 76, 035338 (2007).

  3. G. Bimonte, Phys. Rev. A 78, 062101 (2008).

  4. J. F. Babb, Adv. At. Mol. Opt. Phys. 59, 1 (2010).

    Article  ADS  Google Scholar 

  5. Tran Huu Phat and Nguyen Van Thu, Int. J. Mod. Phys. A 29, 1450078 (2014).

  6. M. Bordag, U. Mohideen, and V. M. Mostepanenko, Phys. Rep. 353, 1 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  7. G. L. Klimchitskaya and U. Mohideen, Rev. Mod. Phys. 81, 1827 (2009).

    Article  ADS  Google Scholar 

  8. M. Fukuto, Y. F. Yano, and P. S. Pershan, Phys. Rev. Lett. 94, 135702 (2005).

  9. A. Ganshin, S. Scheidemantel, R. Garcia, and M. H. W. Chan, Phys. Rev. Lett. 97, 075301 (2006).

  10. D. M. Harber, J. M. Obrecht, J. M. McGuirk, and E. A. Cornell, Phys. Rev. 72, 033610 (2005).

  11. J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, Phys. Rev. Lett. 98, 063201 (2007).

  12. G. L. Klimchitskaya and V. M. Mostepanenko, J. Phys. A 41, 312002 (2008).

  13. J. Schiefele and C. Henkel, J. Phys. A 42, 045401 (2009).

  14. J. O. Andersen, Rev. Mod. Phys. 76, 599 (2004).

    Article  ADS  Google Scholar 

  15. D. C. Roberts and Y. Pomeau, Phys. Rev. Lett. 95, 145303 (2005).

  16. S. Biswas, J. K. Bhattacharjee, D. Majumder, K. Saha, and N. Chakravarty, J. Phys. B 43, 085305 (2010).

  17. Nguyen Van Thu, Phys. Lett. A 382, 1078 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  18. Nguyen Van Thu and Pham The Song, Phys. A (Amsterdam, Neth.) 540, 123018 (2020).

  19. Nguyen Van Thu, Luong Thi Theu, and Dang Thanh Hai, J. Exp. Theor. Phys. 130, 321 (2020).

    Article  ADS  Google Scholar 

  20. Nguyen Van Thu and Luong Thi Theu, J. Stat. Phys. 168, 1 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  21. Nguyen Van Thu and Luong Thi Theu, Int. J. Mod. Phys. B 33, 1950114 (2019).

  22. J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D 10, 2428 (1974).

    Article  ADS  Google Scholar 

  23. L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford Univ. Press, New York, 2003).

    MATH  Google Scholar 

  24. C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge Univ. Press, Cambridge, 2008).

    Book  Google Scholar 

  25. P. Ao and S. T. Chui, Phys. Rev. A 58, 4836 (1998).

    Article  ADS  Google Scholar 

  26. T. H. Phat, L. V. Hoa, N. T. Anh, and N. V. Long, Ann. Phys. 324, 2074 (2009).

    Article  ADS  Google Scholar 

  27. S. Floerchinger and C. Wetterich, Phys. Rev. A 79, 013601 (2009).

  28. Yu. B. Ivanov, F. Riek, and J. Knoll, Phys. Rev. D 71, 105016 (2005).

  29. A. Schmitt, Dense Matter in Compact Stars (Springer, Berlin, 2010).

    Book  Google Scholar 

  30. R. Lipowsky, in Random Fluctuations and Pattern Growth, Ed. by H. Stanley and N. Ostrowsky, Vol. 157 of NATO ASI, Ser. E (Kluwer Academic, Dordrecht, 1988), p. 227.

  31. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 6th ed. (Academic, San Diego, 2005).

    MATH  Google Scholar 

  32. P. D. Drummond, A. Eleftheriou, K. Huang, and K. V. Kheruntsyan, Phys. Rev. A 63, 053602 (2001).

  33. J. Brand and W. P. Reinhardt, J. Phys. B 34, L113 (2001).

    Article  ADS  Google Scholar 

  34. A. A. Shams and H. R. Glyde, Phys. Rev. B 79, 214508 (2009).

  35. D. J. McCarron, H. W. Cho, D. L. Jenkin, M. P. Koppinger, and S. L. Cornish, Phys. Rev. A 84, 011603 (2011).

  36. Nguyen Van Thu, J. Low Temp. Phys. 204, 12 (2021).

    Article  ADS  Google Scholar 

  37. M. M. Faruk and S. Biswas, J. Stat. Mech., 043401 (2018).

  38. E. Aydiner, Ann. Phys., No. 8, 2000178 (2020).

Download references

Funding

This work is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant no. 103.01-2018.02. We are grateful to Shyamal Biswas for their useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Van Thu.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Thu, N. The Casimir Effect in Bose–Einstein Condensate Mixtures Confined by a Parallel Plate Geometry in the Improved Hartree–Fock Approximation. J. Exp. Theor. Phys. 135, 147–157 (2022). https://doi.org/10.1134/S1063776122080131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122080131

Navigation