Skip to main content
Log in

Diode Effect in a Superconducting Hybrid Cu/MoN Strip with a Lateral Cut

Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Transport characteristics of superconducting hybrid Cu/MoN strips with a single cut near one of the strip edges are investigated experimentally. Such strips exhibit a strong diode (nonreciprocal) effect—in the presence of a transverse magnetic field, the critical current can differ by almost five times depending on the current direction. The observed effect is associated with the condensation of current lines near the cut, which leads to different conditions of entrance of vortices from the strip edge with the cut and from the opposite edge without a cut. The difference in the critical currents leads to different voltages in the resistive state for different directions of currents of the same magnitude. Due to the possibility of attaining high velocities of vortices (several km/s) and nonhysteretic current–voltage characteristics in a wide temperature range, such hybrid systems can be used for constructing a superconducting diode operating at frequencies up to 1 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. J. E. Villegas, S. Savel’ev, F. Nori, E. M. Gonzalez, J. V. Anguita, R. Garcia, and J. L. Vicent, Science (Washington, DC, U. S.) 302, 1188 (2003).

    Article  ADS  Google Scholar 

  2. G. Carapella and G. Costabile, Phys. Rev. Lett. 87, 077002 (2001).

  3. J. van de Vondel, C. C. de Souza Silva, B. Y. Zhu, M. Morelle, and V. V. Moshchalkov, Phys. Rev. Lett. 94, 057003 (2005).

  4. B. L. T. Plourde, IEEE Trans. Appl. Supercond. 19, 3698 (2009).

    Article  ADS  Google Scholar 

  5. D. Cerbu, V. N. Gladilin, J. Cuppens, J. Fritzsche, J. Tempere, J. T. Devreese, V. V. Moshchalkov, A. V. Silhanek, and J. van de Vondel, New J. Phys. 15, 063022 (2013).

  6. J. Ji, J. Yuan, G. He, B. Jin, B. Zhu, X. Kong, X. Jia, L. Kang, K. Jin, and P. Wu, Appl. Phys. Lett. 109, 242601 (2019).

  7. O. V. Dobrovolskiy, E. Begun, V. M. Bevz, R. Sachser, and M. Huth, Phys. Rev. Appl. 13, 024012 (2020).

  8. F. Ando, Y. Miyasaka, T. Li, J. Ishizuka, T. Arakawa, Y. Shiota, T. Moriyama, Y. Yanase, and T. Ono, Nature (London, U.K.) 584, 373 (2021).

    Article  Google Scholar 

  9. L. Embon, Y. Anahory, Z. L. Jelic, E. O. Lachman, Y. Myasoedov, M. E. Huber, G. P. Mikitik, A. V. Silhanek, M. V. Milosevic, A. Gurevich, and E. Zeldov, Nat. Commun. 8, 85 (2017).

    Article  ADS  Google Scholar 

  10. O. V. Dobrovolskiy, D. Yu. Vodolazov, F. Porrati, R. Sachser, V. M. Bevz, M. Yu. Mikhailov, A. V. Chumak, and M. Huth, Nat. Commun. 11, 3291 (2020).

    Article  ADS  Google Scholar 

  11. B. Budinska, B. Aichner, D. Yu. Vodolazov, M. Yu. Mikhailov, F. Porrati, M. Huth, A. V. Chumak, W. Lang, and O. V. Dobrovolskiy, Phys. Rev. Appl. 17, 0340721 (2022).

  12. S. S. Ustavschikov, M. Yu. Levichev, I. Y. Pashenkin, A. M. Klushin, and D. Yu. Vodolazov, Supercond. Sci. Technol. 34, 015004 (2021).

  13. D. Yu. Vodolazov and F. M. Peeters, Phys. Rev. B 72, 172508 (2005).

  14. B. I. Ivlev and N. B. Kopnin, Adv. Phys. 33, 80 (1984).

    Article  Google Scholar 

  15. V. S. Stolyarov, T. Cren, Ch. Brun, I. A. Golovchanskiy, O. V. Skryabina, D. I. Kasatonov, M. M. Khapaev, M. Yu. Kupriyanov, A. A. Golubov, and D. Roditchev, Nat. Commun. 9, 2277 (2018).

    Article  ADS  Google Scholar 

  16. L. G. Aslamazov and A. I. Larkin, Sov. Phys. JETP 41, 381 (1975).

    ADS  Google Scholar 

  17. D. Y. Vodolazov and F. M. Peeters, Phys. Rev. B 76, 014521 (2007).

  18. S. V. Lempitskii, Sov. Phys. JETP 63, 462 (1986).

    ADS  Google Scholar 

Download references

Funding

This study was performed under State assignment nos. 0030-2021-0020 (measurements and numerical calculations) and 0030-2022-0006 (sample preparation) for the Institute for Physics of Microstructures, Russian Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Ustavschikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustavschikov, S.S., Levichev, M.Y., Pashenkin, I.Y. et al. Diode Effect in a Superconducting Hybrid Cu/MoN Strip with a Lateral Cut. J. Exp. Theor. Phys. 135, 226–230 (2022). https://doi.org/10.1134/S1063776122080064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122080064

Navigation