Skip to main content
Log in

Recombination Kinetics of Excitons and Trions in Free-Standing CdS Quantum Dots Synthesized by the Langmuir–Blodgett Method

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

CdS quantum dots prepared by the Langmuir–Blodgett method have been investigated using UV spectroscopy and time-resolved photoluminescence. It has turned out that at temperatures 5–300 K, most prominent features in photoluminescence spectra are an intense high-energy peak and a wide low-energy shoulder. The high-energy peak observed in the spectra is due to transitions between states in the valence and conduction bands, and the wide shoulder is associated with defects in quantum dots. The kinetics of band-edge photoluminescence is biexponential, which is interpreted as the simultaneous recombination of negative excitons and trions. It has been found that trion recombination makes a major contribution to the photoluminescence intensity. It has been shown that the recombination rate of both excitons and trions drops with increasing temperature. The slowdown of exciton recombination is attributed to the thermal occupation of higher lying optically inactive states and is well described in terms of the available theoretical models of the exciton state fine structure. The radiative lifetime of trions grows with temperature owing, first, to the occupation of optically passive states and, then, to delocalization of one electron from the quantum dot into the overbarrier continuum of states, which decreases the overlapping integral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, Nat. Photon. 9, 259 (2015).

    Article  ADS  Google Scholar 

  2. H. J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, Appl. Phys. Lett. 80, 4614 (2002).

    Article  ADS  Google Scholar 

  3. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, Chem. Rev. 110, 389 (2010).

    Article  Google Scholar 

  4. S. V. Gaponenko and H. V. Demir, Applied Nanophotonics (Cambridge Univ. Press, Cambridge, 2018).

    Book  Google Scholar 

  5. H. Shen, Y. Zhang, Q. Lin, Zh. Li, L. Chen, Z. Zeng, Y. Jia, Sh. Wang, Z. Du, and Lin Song Li, Nat. Photon. 13, 192 (2019).

    Article  ADS  Google Scholar 

  6. E. Kadantsev and P. Hawrylak, Phys. Rev. B 81, 045311 (2010).

  7. V. I. Klimov, Nanocrystal Quantum Dots (CRC, Boca Raton, FL, 2017).

    Book  Google Scholar 

  8. G. Konstantatos and E. H. Sargent, Colloidal Quantum Dot Optoelectronics and Photovoltaics (Cambridge Univ. Press, Cambridge, 2013).

    Book  Google Scholar 

  9. A. Bagga, P. K. Chattopadhyay, and S. Ghosh, Phys. Rev. B 74, 035341 (2006).

  10. T. Richard, P. Lefebvre, H. Mathieu, and J. Allegre, Phys. Rev. B 53, 7287 (1996).

    Article  ADS  Google Scholar 

  11. J. Li and J.-B. Xia, Phys. Rev. B 62, 12613 (2000).

    Article  ADS  Google Scholar 

  12. Zh. Yu, J. Li, and D. B. O’Connor, J. Phys. Chem. B 107, 5670 (2003).

    Article  Google Scholar 

  13. B. Yang, J. E. Schneeloch, Z. Pan, M. Furis, and M. Achermann, Phys. Rev. B 81, 073401 (2010).

  14. D. O. Demchenko and L. W. Wang, Phys. Rev. B 73, 155326 (2006).

  15. M. Chamarro, M. Dib, V. Voliotis, A. Filoramo, P. Roussignol, T. Gacoin, J. P. Boilot, C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B 57, 3729 (1998).

    Article  ADS  Google Scholar 

  16. P. Hodorska, P. Nemec, D. Sprinzl, P. Maly, V. N. Gladilin, and J. T. Devreese, Phys. Rev. B 81, 045301 (2010).

  17. D. Kim, T. Mishima, and M. Nakayama, J. Phys. Chem. C 112, 10668 (2008).

    Article  Google Scholar 

  18. E. A. Bagaev, K. S. Zhuravlev, and L. L. Sveshnikova, Semiconductors 40, 1188 (2006).

    Article  ADS  Google Scholar 

  19. A. A. Zarubanov and K. S. Zhuravlev, Semiconductors 44, 380 (2015).

    Article  ADS  Google Scholar 

  20. K. A. Svit and K. S. Zhuravlev, J. Phys. Chem. C 119, 19496 (2015).

    Article  Google Scholar 

  21. E. A. Bagaev, K. S. Zhuravlev, L. L. Sveshnikova, I. A. Badmaeva, S. M. Repinski, and M. Voelskow, Semiconductors 37, 1321 (2003).

    Article  ADS  Google Scholar 

  22. D. Yu. Protasov, W.-B. Jian, K. A. Svit, T. A. Duda, S. A. Teys, A. S. Koshuhov, L. L. Sveshnikova, and K. S. Zhuravlev, J. Phys. Chem. C 115, 20148 (2011).

    Article  Google Scholar 

  23. A. A. Zarubanov, V. F. Plyusnin, and K. S. Zhuravlev, Semiconductors 51, 576 (2017).

    Article  ADS  Google Scholar 

  24. N. Kumar, F. Alam, and V. Dutta, RCS Adv. 6, 28316 (2016).

  25. K. A. Svit, A. A. Zarubanov, T. A. Duda, S. V. Trubina, V. V. Zvereva, E. V. Fedosenko, and K. S. Zhuravlev, Langmuir 37, 5651 (2021).

    Article  Google Scholar 

  26. L. E. Brus, J. Chem. Phys. 80, 4403 (1984).

    Article  ADS  Google Scholar 

  27. O. V. Ovchinnikov, M. S. Smirnov, N. V. Korolev, P. A. Golovinski, and A. G. Vitukhnovsky, J. Limin. 179, 413 (2016).

  28. N. S. Kurochkin, A. A. Vashchenko, A. G. Vitukhovsky, and P. N. Tananaev, Semiconductors 49, 953 (2015).

    Article  ADS  Google Scholar 

  29. S. A. Crooker, T. Barrick, J. A. Hollingsworth, and V. I. Klimov, Appl. Phys. Lett. 82, 2793 (2003).

    Article  ADS  Google Scholar 

  30. T. Inoshita and H. Sakaki, Phys. B (Amsterdam, Neth.) 227, 373 (1996).

  31. V. A. Fonoberov and A. A. Balandin, Appl. Phys. Lett. 85, 5971 (2004).

    Article  ADS  Google Scholar 

  32. L. W. Wang, J. Phys. Chem. B 105, 2360 (2001).

    Article  Google Scholar 

  33. S. I. Pokutnii, Semiconductors 44, 488 (2010).

    Article  ADS  Google Scholar 

  34. S. I. Pokutnii, Tech. Phys. 61, 1737 (2016).

    Article  Google Scholar 

  35. B. Patton, W. Langbein, and U. Woggon, Phys. Rev. B 68, 125316 (2003).

  36. M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, J. Phys. Chem. B 107, 13782 (2003).

    Article  Google Scholar 

  37. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, Nat. Mater. 7, 659 (2008).

    Article  ADS  Google Scholar 

  38. I. Robei, R. Gresback, U. Kortshagen, R. D. Schaller, and V. I. Klimov, Phys. Rev. Lett. 102, 177404 (2009).

  39. D. Sarkar, H. P. Meulen, J. M. Calleja, J. M. Becker, R. J. Haug, and K. Pierz, J. Appl. Phys. 100, 023109 (2006).

  40. M. Califano, A. Franceschetti, and A. Zunger, Phys. Rev. B 75, 115401 (2007).

  41. C. Javaux, B. Mahler, B. Dubertret, A. Shabaev, A. V. Rodina, Al. L. Efros, D. Yakovlev, F. Liu, M. Bayer, G. Camps, L. Biadala, S. Buil, X. Quelin, and J.-P. Hermier, Nat. Nanotechnol. 8, 206 (2013).

    Article  ADS  Google Scholar 

  42. H. Sun, J. Wang, F. Wang, L. Xu, K. Jiang, L. Shang, Z. Hu, and J. Chu, Nanoscale 10, 11553 (2018).

    Article  Google Scholar 

  43. P. C. Sercel and A. L. Efros, Nano Lett. 18, 4061 (2018).

    Article  ADS  Google Scholar 

  44. A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).

    Article  ADS  Google Scholar 

  45. A. L. Efros and M. Rosen, Phys. Rev. B 58, 7120 (1998).

    Article  ADS  Google Scholar 

  46. M. Sahin, Phys. Rev. B 77, 119901 (2008).

  47. A. M. Gilinsky and K. S. Zhuravlev, Appl. Phys. Lett. 79, 3455 (2001).

    Article  ADS  Google Scholar 

  48. X. Hou, Y. Li, H. Qin, and X. Peng, J. Chem. Phys. 151, 234703 (2019).

  49. G. E. Cragg and A. L. Efros, Nano. Lett. 10, 313 (2010).

    Article  ADS  Google Scholar 

  50. A. Jain, O. Voznyy, S. Hoogland, M. Korkusinski, P. Hawrylak, and E. H. Sargent, Nano Lett. 16, 6491 (2016).

    Article  ADS  Google Scholar 

  51. V. V. Solovyev and I. V. Kukushkin, Phys. Rev. B 79, 233306 (2009).

  52. Y. Kobayashi, T. Nishimura, H. Yamaguchi, and N. Tamai, J. Phys. Chem. Lett. 2, 1051 (2011).

    Article  Google Scholar 

  53. A. W. Cohn, J. D. Rinehart, A. M. Schimpf, A. L. Weaver, and D. R. Gamelin, Nano Lett. 14, 353 (2014).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank T.A. Duda for preparations of samples and valuable discussion.

Funding

The investigation was supported by grant no. MK-31.481.2 of the President of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Svit.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svit, K.A., Zarubanov, A.A. & Zhuravlev, K.S. Recombination Kinetics of Excitons and Trions in Free-Standing CdS Quantum Dots Synthesized by the Langmuir–Blodgett Method. J. Exp. Theor. Phys. 135, 215–225 (2022). https://doi.org/10.1134/S1063776122080052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122080052

Navigation