Skip to main content
Log in

Statistical Properties of Pseudothermal Radiation Formed by a Spatial Light Modulator

Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We report the results of theoretical and experimental investigations of statistical properties of pseudothermal radiation formed after the reflection from the phase spatial light modulator. We have obtained expressions for the spatial correlation function and the correlation radius of a random pseudothermal radiation. In the general case, the field turns out to be statistically anisotropic (the correlation radius in the transverse plane of the scattered beam in one of orthogonal directions depends on the angle of incidence of the coherent beam on the modulator). It has been proved rigorously based on the calculation of field distribution function cumulants that in the far-field zone, the random field obeys the Gaussian statistics. We report on the results of experiments on the transformation of a coherent laser beam into radiation with the pseudothermal statistics using a liquid-crystal spatial light modulator. The experimental data obtained with the help of proprietary software package are in good agreement with the results of theoretical conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, in Quantum Imaging, Ed. by M. I. Kolobov (Springer, 2007), Chap. 5.

    Google Scholar 

  2. B. I. Erkmen and R. W. Boyd, Adv. Opt. Photon. 2, 405 (2010).

    Article  Google Scholar 

  3. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, Opt. Express 18, 5562 (2010).

    Article  ADS  Google Scholar 

  4. J. H. Shapiro and R. W. Boyd, Quant. Inf. Process. 11, 949 (2012).

    Article  Google Scholar 

  5. S. A. Akhmanov, Yu. E. D’yakov, and A. S. Chirkin, Introduction to Statistical Radio Physics and Optics (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  6. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  7. H. Cummins, Photon Correlation and Light Beating Spectroscopy (Springer Science, New York, 2013), Vol. 3.

    Google Scholar 

  8. B. Crosignani, P. di Porto, and M. Bertolotti, Statistical Properties of Scattered Light (Academic, New York, 1975).

    Google Scholar 

  9. D. N. Klyshko, J. Exp. Theor. Phys. 78, 848 (1994).

    ADS  Google Scholar 

  10. A. V. Belinskii and D. N. Klyshko, J. Exp. Theor. Phys. 78, 259 (1994).

    ADS  Google Scholar 

  11. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, et al., Phys. Rev. Lett. 74, 3600 (1995).

    Article  ADS  Google Scholar 

  12. T. B. Pittman, Y. Shih, D. V. Strekalov, et al., Phys. Rev. A 52, R3429 (1995).

    Article  ADS  Google Scholar 

  13. A. S. Chirkin, P. P. Gostev, D. P. Agapov, et al., Laser Phys. Lett. 15, 115404 (2018).

  14. S. Magnitskiy, D. Agapov, and A. Chirkin, Opt. Lett. 192, 3641 (2020).

    Article  ADS  Google Scholar 

  15. S. Magnitskiy, D. Agapov, and A. Chirkin, Opt. Lett. 47, 754 (2022).

    Article  ADS  Google Scholar 

  16. M. Rosskopf, T. Mohr, and W. Elsäßer, Phys. Rev. Appl. 13, 034062 (2020).

  17. T. Jiang, W. Tan, X. Huang, et al., J. Opt. 23, 075201 (2021).

  18. J. H. Shapiro, Phys. Rev. A 78, 061802(R) (2008).

  19. G. M. Gibson, S. D. Johnson, and M. J. Padgett, Opt. Express 28, 28190 (2020).

    Article  ADS  Google Scholar 

  20. V. Katkovnik and J. Astola, J. Opt. Soc. Am. A 29, 1556 (2012).

    Article  ADS  Google Scholar 

  21. J. Pinnell, I. Nape, B. Sephton, et al., J. Opt. Soc. Am. A 37, C146 (2020).

    Article  Google Scholar 

  22. A. A. Pushkina, J. I. Costa-Filho, G. Maltese, et al., Meas. Sci. Technol. 31, 125202 (2020).

  23. Ch. Wang, R.-J. Lan, Ch. Ren, et al., Phys. Rev. A 101, 033819 (2020).

  24. H. C. Liu, B. Yang, Q. Guo, et al., Sci. Adv. 3, e1701477 (2017).

Download references

ACKNOWLEDGMENTS

D.P. Agapov acknowledges that this research was performed according to the Development program of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University “Photonic and Quantum technologies. Digital medicine.”

Funding

This study was supported by the Russian Science Foundation (project no. 21-12-00155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Agapov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agapov, D.P., Belovolov, I.A., Gostev, P.P. et al. Statistical Properties of Pseudothermal Radiation Formed by a Spatial Light Modulator. J. Exp. Theor. Phys. 135, 188–196 (2022). https://doi.org/10.1134/S1063776122080015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122080015

Navigation