Skip to main content

Role of an Extended Filamentation Focus during the Ultrashort-Pulse Laser Ablation of the Silicon Surface in an Aqueous Medium

Abstract

The laser ablation of a silicon target in distilled water is carried out by single femto- and picosecond pulses upon focusing with an objective lens with a numerical aperture NA = 0.25 as a function of the focus position relative to the target surface. A plasma channel in water is visualized for the given numerical aperture used. The ablation surface relief is characterized using scanning and probe electron microscopy. The maximum crater depths and volumes are detected and analyzed as functions of the position of the linear and extended nonlinear foci.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. K. M. Ahmmed, C. Grambow, and A. M. Kietzig, Micromachines 5, 1219 (2014).

    Article  Google Scholar 

  2. A. A. Nastulyavichus, S. I. Kudryashov, I. N. Saraeva, et al., Laser Phys. Lett. 17, 016003 (2019).

  3. N. H. Rizvi, RIKEN Rev., No. 50 (2003).

  4. L. Rihakova and H. Chmelickova, Adv. Mater. Sci. Eng. 2015 (2), 1 (2015).

    Article  Google Scholar 

  5. S. Singh and G. L. Samuel, Application of Lasers in Manufacturing (Springer, Berlin, 2019).

    Google Scholar 

  6. R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).

    ADS  Article  Google Scholar 

  7. P. A. Danilov, S. I. Kudryashov, A. E. Rupasov, N. A. Smirnov, E. A. Oleynichuk, A. S. Rivnyuk, and R. A. Zakoldaev, JETP Lett. 113, 622 (2021).

    ADS  Article  Google Scholar 

  8. L. Ding, R. Blackwell, J. F. Künzler, et al., Opt. Express 14, 11901 (2006).

    ADS  Article  Google Scholar 

  9. A. A. Ionin, S. I. Kudryashov, and A. A. Samokhin, Phys. Usp. 60, 149 (2017).

    ADS  Article  Google Scholar 

  10. K. H. Leitz, B. Redlingshöfer, Y. Reg, et al., Phys. Proc. 12, 230 (2011).

    ADS  Article  Google Scholar 

  11. Z. Li, Q. Wu, X. Jiang, et al., Appl. Surf. Sci. 580, 152107 (2022).

  12. P. Nürnberger, H. M. Reinhardt, H. C. Kim, et al., Appl. Surf. Sci. 425, 682 (2017).

    ADS  Article  Google Scholar 

  13. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

    ADS  Article  Google Scholar 

  14. S. Butkus, E. Gaižauskas, D. Paipulas, et al., Appl. Phys. A 114, 81 (2014).

    ADS  Article  Google Scholar 

  15. I. N. Saraeva, S. I. Kudryashov, A. A. Rudenko, et al., Appl. Surf. Sci. 470, 1018 (2019).

    ADS  Article  Google Scholar 

  16. S. I. Kudryashov, A. A. Nastulyavichus, A. K. Ivanova, et al., Appl. Surf. Sci. 470, 825 (2019).

    ADS  Article  Google Scholar 

  17. N. A. Inogamov, V. V. Zhakhovsky, and V. A. Khokhlov, JETP Lett. 115, 16 (2022).

    ADS  Article  Google Scholar 

  18. D. Zhang, B. Gokce, and S. Barcikowski, Chem. Rev. 117, 3990 (2017).

    Article  Google Scholar 

  19. N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, J. Exp. Theor. Phys. 127, 79 (2018).

    ADS  Article  Google Scholar 

  20. M. Trtica, J. Stasic, and D. Batani, Appl. Surf. Sci. 428, 669 (2018).

    ADS  Article  Google Scholar 

  21. H. Wang, F. Pöhl, and K. Yan, Appl. Surf. Sci. 471, 869 (2019).

    ADS  Article  Google Scholar 

  22. N. A. Smirnov, S. I. Kudryashov, P. A. Danilov, A. A. Rudenko, A. A. Ionin and A. A. Nastulyavichus, JETP Lett. 108, 368 (2018).

    ADS  Article  Google Scholar 

  23. N. A. Smirnov, S. I. Kudryashov, A. A. Rudenko, et al., Appl. Surf. Sci. 562, 150243 (2021).

  24. A. Nastulyavichus, N. Smirnov, and S. Kudryashov, Chin. Phys. B (2022). https://doi.org/10.1088/1674-1056/ac5602

  25. P. A. Danilov, A. A. Ionin, S. I. Kudryashov, et al., Opt. Mater. Express 10, 2717 (2020).

    ADS  Article  Google Scholar 

  26. N. A. Smirnov, S. I. Kudryashov, P. A. Danilov, et al., Opt. Quantum Electron. 52, 1 (2020).

    Article  Google Scholar 

  27. J. P. Sylvestre, A. V. Kabashin, E. Sacher, et al., Appl. Phys. A 80, 753 (2005).

    ADS  Article  Google Scholar 

  28. A. Menéndez-Manjón, P. Wagener, and S. Barcikowski, J. Phys. Chem. C 115, 5108 (2011).

    Article  Google Scholar 

  29. Yu. E. Geints, A. A. Zemlyanov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva, J. Exp. Theor. Phys. 111, 724 (2010).

    ADS  Article  Google Scholar 

  30. F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, et al., New J. Phys. 17, 053010 (2015).

  31. Q. Cui, J. Yao, J. Ni, et al., J. Mod. Opt. 59, 1569 (2012).

    ADS  Article  Google Scholar 

  32. G. Raciukaitis, M. Brikas, P. Gecys, et al., J. Laser Micro/Nanoeng. 4, 186 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Smirnov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smirnov, N.A., Kudryashov, S.I. & Ionin, A.A. Role of an Extended Filamentation Focus during the Ultrashort-Pulse Laser Ablation of the Silicon Surface in an Aqueous Medium. J. Exp. Theor. Phys. 135, 44–47 (2022). https://doi.org/10.1134/S1063776122070068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122070068