Skip to main content
Log in

Role of an Extended Filamentation Focus during the Ultrashort-Pulse Laser Ablation of the Silicon Surface in an Aqueous Medium

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The laser ablation of a silicon target in distilled water is carried out by single femto- and picosecond pulses upon focusing with an objective lens with a numerical aperture NA = 0.25 as a function of the focus position relative to the target surface. A plasma channel in water is visualized for the given numerical aperture used. The ablation surface relief is characterized using scanning and probe electron microscopy. The maximum crater depths and volumes are detected and analyzed as functions of the position of the linear and extended nonlinear foci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. M. Ahmmed, C. Grambow, and A. M. Kietzig, Micromachines 5, 1219 (2014).

    Article  Google Scholar 

  2. A. A. Nastulyavichus, S. I. Kudryashov, I. N. Saraeva, et al., Laser Phys. Lett. 17, 016003 (2019).

  3. N. H. Rizvi, RIKEN Rev., No. 50 (2003).

  4. L. Rihakova and H. Chmelickova, Adv. Mater. Sci. Eng. 2015 (2), 1 (2015).

    Article  Google Scholar 

  5. S. Singh and G. L. Samuel, Application of Lasers in Manufacturing (Springer, Berlin, 2019).

    Google Scholar 

  6. R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).

    Article  ADS  Google Scholar 

  7. P. A. Danilov, S. I. Kudryashov, A. E. Rupasov, N. A. Smirnov, E. A. Oleynichuk, A. S. Rivnyuk, and R. A. Zakoldaev, JETP Lett. 113, 622 (2021).

    Article  ADS  Google Scholar 

  8. L. Ding, R. Blackwell, J. F. Künzler, et al., Opt. Express 14, 11901 (2006).

    Article  ADS  Google Scholar 

  9. A. A. Ionin, S. I. Kudryashov, and A. A. Samokhin, Phys. Usp. 60, 149 (2017).

    Article  ADS  Google Scholar 

  10. K. H. Leitz, B. Redlingshöfer, Y. Reg, et al., Phys. Proc. 12, 230 (2011).

    Article  ADS  Google Scholar 

  11. Z. Li, Q. Wu, X. Jiang, et al., Appl. Surf. Sci. 580, 152107 (2022).

  12. P. Nürnberger, H. M. Reinhardt, H. C. Kim, et al., Appl. Surf. Sci. 425, 682 (2017).

    Article  ADS  Google Scholar 

  13. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

    Article  ADS  Google Scholar 

  14. S. Butkus, E. Gaižauskas, D. Paipulas, et al., Appl. Phys. A 114, 81 (2014).

    Article  ADS  Google Scholar 

  15. I. N. Saraeva, S. I. Kudryashov, A. A. Rudenko, et al., Appl. Surf. Sci. 470, 1018 (2019).

    Article  ADS  Google Scholar 

  16. S. I. Kudryashov, A. A. Nastulyavichus, A. K. Ivanova, et al., Appl. Surf. Sci. 470, 825 (2019).

    Article  ADS  Google Scholar 

  17. N. A. Inogamov, V. V. Zhakhovsky, and V. A. Khokhlov, JETP Lett. 115, 16 (2022).

    Article  ADS  Google Scholar 

  18. D. Zhang, B. Gokce, and S. Barcikowski, Chem. Rev. 117, 3990 (2017).

    Article  Google Scholar 

  19. N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, J. Exp. Theor. Phys. 127, 79 (2018).

    Article  ADS  Google Scholar 

  20. M. Trtica, J. Stasic, and D. Batani, Appl. Surf. Sci. 428, 669 (2018).

    Article  ADS  Google Scholar 

  21. H. Wang, F. Pöhl, and K. Yan, Appl. Surf. Sci. 471, 869 (2019).

    Article  ADS  Google Scholar 

  22. N. A. Smirnov, S. I. Kudryashov, P. A. Danilov, A. A. Rudenko, A. A. Ionin and A. A. Nastulyavichus, JETP Lett. 108, 368 (2018).

    Article  ADS  Google Scholar 

  23. N. A. Smirnov, S. I. Kudryashov, A. A. Rudenko, et al., Appl. Surf. Sci. 562, 150243 (2021).

  24. A. Nastulyavichus, N. Smirnov, and S. Kudryashov, Chin. Phys. B (2022). https://doi.org/10.1088/1674-1056/ac5602

  25. P. A. Danilov, A. A. Ionin, S. I. Kudryashov, et al., Opt. Mater. Express 10, 2717 (2020).

    Article  ADS  Google Scholar 

  26. N. A. Smirnov, S. I. Kudryashov, P. A. Danilov, et al., Opt. Quantum Electron. 52, 1 (2020).

    Article  Google Scholar 

  27. J. P. Sylvestre, A. V. Kabashin, E. Sacher, et al., Appl. Phys. A 80, 753 (2005).

    Article  ADS  Google Scholar 

  28. A. Menéndez-Manjón, P. Wagener, and S. Barcikowski, J. Phys. Chem. C 115, 5108 (2011).

    Article  Google Scholar 

  29. Yu. E. Geints, A. A. Zemlyanov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva, J. Exp. Theor. Phys. 111, 724 (2010).

    Article  ADS  Google Scholar 

  30. F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, et al., New J. Phys. 17, 053010 (2015).

  31. Q. Cui, J. Yao, J. Ni, et al., J. Mod. Opt. 59, 1569 (2012).

    Article  ADS  Google Scholar 

  32. G. Raciukaitis, M. Brikas, P. Gecys, et al., J. Laser Micro/Nanoeng. 4, 186 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Smirnov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, N.A., Kudryashov, S.I. & Ionin, A.A. Role of an Extended Filamentation Focus during the Ultrashort-Pulse Laser Ablation of the Silicon Surface in an Aqueous Medium. J. Exp. Theor. Phys. 135, 44–47 (2022). https://doi.org/10.1134/S1063776122070068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122070068

Navigation