Skip to main content
Log in

Numerical Simulation of the Yield of α Particles and Neutrons from the 11B(p, 3α) and 11B(p, n)11C Nuclear Reactions Induced by Intense Picosecond Laser Radiation

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The yields of alpha particles and neutrons from the promising 11B(p, 3α) fusion reaction and the reference 11B(p, n)11C nuclear reaction, respectively, which are induced by intense picosecond laser radiation with an intensity of 2 × 1018 W/cm2, have been numerically simulated. The numerical simulation of the interaction of a laser pulse with a primary aluminum target has been carried out in the two-dimensional xz version of the KARAT PIC (particle-in-cell) code in two stages. First, the proton flux from the back side of the Al target on which the laser pulse is incident has been calculated. Second, 11B(p, 3α) and 11B(p, n)11C reactions induced by the proton beam in the boron target have been simulated. The calculations have shown that the total yield of alpha particles is Nα = 7.2 × 108, the number of alpha particles with energies above 0.5 MeV that reach a detector is 2 × 107, which is 2.8% of their total yield, and the total yield of neutrons is Yn = 105. The numerical simulation gives the yields of alpha particles and neutrons from the 11B(p, 3α) and 11B(p, n)11C reactions per pulse that are in sufficiently good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Isotopes: Properties, Production, Application, Ed. by V. Yu. Baranov (Nauka, Moscow, 1999), Vol. 2.

    Google Scholar 

  2. A. B. Kukushkin and V. I. Kogan, Sov. J. Plasma Phys. 5, 708 (1979).

    ADS  Google Scholar 

  3. V. S. Belyaev, A. P. Matafonov, V. I. Vinogradov, V. P. Krainov, V. S. Lisitsa, A. S. Roussetski, G. N. Ignatyev, and V. P. Andrianov, Phys. Rev. E 72, 026406 (2005).

  4. C. Labaune, C. Baccou, S. Depierreux, C. Goyon, G. Loisel, V. Yahia, and J. Rafelski, Nat. Commun. 4, 2506 (2013).

    Article  ADS  Google Scholar 

  5. A. Picciotto, D. Margarone, A. Velyhan, P. Bellutti, J. Krasa, A. Szydlowsky, G. Bertuccio, Y. Shi, A. Mangione, J. Prokupek, A. Malinowska, E. Krousky, J. Ullschmied, L. Laska, M. Kucharik, and G. Korn, Phys. Rev. X 4, 031030 (2014).

  6. L. Giuffrida, F. Belloni, D. Margarone, G. Petringa, G. Milluzzo, V. Scuderi, A. Velyhan, M. Rosinski, A. Picciotto, M. Kucharik, J. Dostal, R. Dudzak, J. Krasa, V. Istokskaia, R. Catalano, S. Tudisco, et al., Phys. Rev. E 101, 013204 (2020).

  7. D. Margarone, A. Morace, J. Bonvalet, Y. Abe, V. Kantarelou, D. Raffestin, L. Giuffrida, P. Nicolai, M. Tosca, A. Picciotto, G. Petringa, G. A. P. Cirrone, Y. Fukuda, Y. Kuramitsu, H. Habara, Y. Arikawa, et al., Front. Phys. 8, 343 (2020).

    Article  Google Scholar 

  8. C. Baccou, S. Depierreux, V. Yahia, C. Neuville, C. Goyon, R. de Angelis, F. Consoli, J. E. Ducret, G. Boutoux, J. Rafelski, and C. Labaune, Laser Part. Beams 33, 117 (2015).

    Article  ADS  Google Scholar 

  9. V. S. Belyaev, A. P. Matafonov, V. P. Krainov, A. Yu. Kedrov, B. V. Zagreev, A S Rusetskii, N. G. Borisenko, A. I. Gromov, A. V. Lobanov, and V. S. Lisitsa, Phys. At. Nucl. 83, 641 (2020).

    Article  Google Scholar 

  10. V. S. Belyaev, A. P. Matafonov, S. N. Andreev, V. P. Tarakanov, V. P. Krainov, V. S. Lisitsa, A. Yu. Kedrov, B. V. Zagreev, A. S. Rusetskii, N. G. Borisenko, A. I. Gromov, and A. V. Lobanov, Phys. At. Nucl. 85, 31 (2022).

    Article  Google Scholar 

  11. V. P. Tarakanov, EPJ Web Conf. 149, 04024 (2017).

  12. N. N. Demchenko and V. B. Rozanov, in Proceedings of the 27th European Conference on Laser Interaction with Matter ECLIM 2002, Proc. SPIE 5228, 427 (2003).

    Article  ADS  Google Scholar 

  13. N. N. Demchenko, S. Yu. Gus’kov, V. B. Rozanov, A. I. Gromov, V. S. Belyaev, D. V. Kovkov, A V. Lobanov, A. Yu. Kedrov, A. P. Matafonov, and V. P. Krainov, J. Exp. Theor. Phys. 128, 178 (2019).

    Article  ADS  Google Scholar 

  14. V. S. Belyaev, V. I. Vinogradov, A. S. Kurilov, A. P. Matafonov, V. P. Andrianov, G. N. Ignat’ev, A. Ya. Faenov, T. A. Pikuz, I. Yu. Skobelev, A. I. Magunov, S. A. Pikuz, Jr., and B. Yu. Sharkov, J. Exp. Theor. Phys. 99, 1133 (2004).

    Article  ADS  Google Scholar 

  15. V. S. Belyaev, B. V. Zagreev, A. Yu. Kedrov, A. G. Kol’chugin, V. P. Krainov, and A. P. Matafonov, J. Exp. Theor. Phys. 133, 396 (2021).

    Article  ADS  Google Scholar 

  16. S. N. Andreev and V. P. Tarakanov, Plasma Phys. Rep. 35, 1013 (2009).

    Article  ADS  Google Scholar 

  17. V. Belyaev and A. Matafonov, Acta Tech. 56, T438 (2011).

    Google Scholar 

  18. S. Stave, M. W. Ahmed, R. H. France III, S. S. Henshaw, B. Müller, B. A. Perdue, R. M. Prior, M. C. Spraker, and H. R. Weller, Phys. Lett. B 696, 26 (2011).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to program 10 “Experimental Laboratory Astrophysics and Geophysics,” National Center for Physics and Mathematics for organization of stimulating discussions.

Funding

This work was supported by the Ministry of Education of the Russian Federation (state assignment no. AAAA-A20-120061890084-9 “Physics of Nanostructured Materials: Fundamental Research and Applications in Materials Science, Nanotechnologies, and Photonics”), partially by the Russian Foundation for Basic Research (project no. 18-29-21021), and by the Ministry of Science and Higher Education of the Russian Federation (project no. FSMG-2021-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Krainov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, S.N., Belyaev, V.S., Matafonov, A.P. et al. Numerical Simulation of the Yield of α Particles and Neutrons from the 11B(p, 3α) and 11B(p, n)11C Nuclear Reactions Induced by Intense Picosecond Laser Radiation. J. Exp. Theor. Phys. 135, 26–34 (2022). https://doi.org/10.1134/S1063776122070019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122070019

Navigation