Skip to main content
Log in

Specific Features of the Self-Action Dynamics of Wave Packets with Initially Normal Group-Velocity Dispersion in Nonlinear Lattices

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Specific features of the self-action of wave fields are studied in the framework of a discrete nonlinear Schrödinger equation (DNSE). It is shown analytically and numerically that the dynamics of wave packets with initially normal group-velocity dispersion in systems described by this model equation may differ significantly from the evolution of similar distributions in a continuous medium. The behavior of wave fields with initially smooth (compared to the lattice period) amplitude profile and phase front is analyzed in detail, and the mechanism of their destruction in chains of equidistant elements is studied. A modification of the dispersionless approximation is proposed, which makes it possible to theoretically describe the effects leading to the development of small-scale instabilities against the background of a smooth envelope and to its subsequent significant deformations (up to destruction). Estimates of critical parameters are presented above which one should expect the above-mentioned processes (uncharacteristic of continuous media).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives (Springer, New York, 2009).

    Book  Google Scholar 

  2. C. Denz, S. Flach, Yu S. Kivshar, et al., Nonlinearities in Periodic Structures and Metamaterials (Springer, Berlin, 2010).

    Book  Google Scholar 

  3. F. Lederer, G. I. Stegeman, D. N. Christodoulides, et al., Phys. Rep. 463, 1 (2008).

    Article  ADS  Google Scholar 

  4. Yu. V. Kartashov, B. A. Malomed, and L. Torner, Rev. Mod. Phys. 83, 247 (2011).

    Article  ADS  Google Scholar 

  5. I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Yu. S. Kivshar, Phys. Rep. 518, 1 (2012).

    Article  ADS  Google Scholar 

  6. E. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structures, Vol. 8 of Oxford Texts in Applied and Engineering Mathematics (Oxford Univ. Press, Oxford, 2003).

  7. E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos (Cambridge Univ. Press, Cambridge, 2012).

    MATH  Google Scholar 

  8. J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems (SIAM, Philadelphia, 2010).

    Book  Google Scholar 

  9. A. B. Aceves, C. de Angelis, T. Peschel, et al., Phys. Rev. E 53, 1172 (1996).

    Article  ADS  Google Scholar 

  10. A. A. Balakin, A. G. Litvak, V. A. Mironov, and S. A. Skobelev, Phys. Rev. A 94, 063806 (2016).

  11. A. G. Litvak, V. A. Mironov, S. A. Skobelev, and L. A. Smirnov, J. Exp. Theor. Phys. 126, 21 (2018).

    Article  ADS  Google Scholar 

  12. A. A. Balakin, A. G. Litvak, V. A. Mironov, and S. A. Skobelev, Quant. Electr. 48, 720 (2018).

    Article  ADS  Google Scholar 

  13. A. A. Balakin, A. G. Litvak, V. A. Mironov, and S. A. Skobelev, Laser Phys. 28, 045401 (2018).

  14. A. A. Balakin, A. G. Litvak, V. Mironov, et al., Laser Phys. 28, 105401 (2018).

  15. O. Bang and P. D. Miller, Opt. Lett. 21, 1105 (1996).

    Article  ADS  Google Scholar 

  16. A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001).

    Article  ADS  Google Scholar 

  17. A. Smerzi, A. Trombettoni, P. G. Kevrekidis, and A. R. Bishop, Phys. Rev. Lett. 89, 170402 (2002).

  18. T. Anker, M. Albiez, R. Gati, et al., Phys. Rev. Lett. 94, 020403 (2005).

  19. R. Franzosi, R. Livi, G.-L. Oppo, and A. Politi, Nonlinearity 24, R89 (2011).

    Article  Google Scholar 

  20. H. Hennig and R. Fleischmann, Phys. Rev. A 87, 033605 (2013).

  21. H. Hennig, T. Neff, and R. Fleischmann, Phys. Rev. E 93, 032219 (2016).

  22. G. B. Whitham, Linear and Nonlinear Waves (Wiley Intersci., New York, 1974).

    MATH  Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon, New York, 1987; Fizmatlit, Moscow, 2001).

  24. S. Trillo and M. Conforti, in Handbook of Optical Fibers, Ed. by G.-D. Peng (Springer, Singapore, 2019), p. 373.

    Google Scholar 

  25. A. M. Kamchatnov, Phys. Usp. 64, 48 (2021).

    Article  ADS  Google Scholar 

  26. A. M. Kamchatnov, J. Exp. Theor. Phys. 127, 903 (2018).

    Article  ADS  Google Scholar 

  27. A. M. Kamchatnov, Phys. Rev. E 99, 012203 (2019).

  28. M. Isoard, A. M. Kamchatnov, and N. Pavloff, Phys. Rev. A 99, 053819 (2019).

  29. M. Isoard, A. M. Kamchatnov, and N. Pavloff, Europhys. Lett. 129, 64003 (2020).

    Article  ADS  Google Scholar 

  30. S. Ivanov and A. Kamchatnov, Phys. Fluids 31, 057102 (2019).

  31. S. K. Ivanov and A. M. Kamchatnov, Phys. Fluids 32, 126115 (2020).

  32. S. K. Ivanov, J.-E. Suchorski, A. M. Kamchatnov, et al., Phys. Rev. E 102, 032215 (2020).

  33. G. Xu, A. Mussot, A. Kudlinski, et al., Opt. Lett. 41, 2656 (2016).

    Article  ADS  Google Scholar 

  34. V. A. Brazhnyi, A. M. Kamchatnov, and V. V. Konotop, Phys. Rev. A 68, 035603 (2003).

  35. A. M. Kamchatnov, J. Exp. Theor. Phys. 98, 908 (2004).

    Article  ADS  Google Scholar 

  36. Y. Kodama and S. Wabnitz, Opt. Lett. 20, 2291 (1995).

    Article  ADS  Google Scholar 

  37. Y. Kodama, S. Wabnitz, and K. Tanaka, Opt. Lett. 21, 719 (1996).

    Article  ADS  Google Scholar 

  38. Y. Kodama, SIAM J. Appl. Math. 59, 2162 (1999).

    Article  MathSciNet  Google Scholar 

  39. G. Biondini and Y. Kodama, J. Nonlin. Sci. 16, 435 (2006).

    Google Scholar 

  40. O. C. Wright, M. G. Forest, and K.-R. McLaughlin, Phys. Lett. A 257, 170 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Forest, C. J. Rosenberg, and O. C. Wright, Nonlinearity 22, 2287 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  42. S. K. Ivanov and A. M. Kamchatnov, Phys. Rev. A 99, 013609 (2019).

  43. S. K. Ivanov and A. M. Kamchatnov, Europhys. Lett. 132, 65001 (2020).

    Article  ADS  Google Scholar 

  44. G. Marcucci, D. Pierangeli, S. Gentilini, et al., Adv. Phys. X 4, 1662733 (2019).

  45. T. Bienaimé, M. Isoard, Q. Fontaine, et al., Phys. Rev. Lett. 126, 183901 (2021).

  46. B. Wetzel, D. Bongiovanni, M. Kues, et al., Phys. Rev. Lett. 117, 073902 (2016).

  47. D. Bongiovanni, B. Wetzel, P. Yang, et al., Opt. Lett. 44, 3542 (2019).

    Article  ADS  Google Scholar 

  48. D. Bongiovanni, B. Wetzel, Z. Li, et al., Opt. Express 28, 39827 (2020).

    Article  ADS  Google Scholar 

  49. M. A. Hoefer, P. Engels, and J. J. Chang, Phys. D (Amsterdam, Neth.) 238, 1311 (2009).

  50. B. G. Bale and S. Boscolo, J. Opt. 12, 015202 (2009).

  51. S. Wabnitz, J. Opt. 15, 064002 (2013).

  52. M. Conforti, F. Baronio, and S. Trillo, Phys. Rev. A 89, 013807 (2014).

  53. S. Bose, R. Chattopadhyay, and S. K. Bhadra, Opt. Commun. 412, 226 (2018).

    Article  ADS  Google Scholar 

  54. A. B. Shvartsburg, Phys. Rep. 83, 107 (1982).

    Article  ADS  Google Scholar 

  55. A. M. Kamchatnov, J. Phys. Commmun. 2, 025027 (2018).

  56. S. K. Ivanov, Phys. Rev. A 101, 053827 (2020).

Download references

Funding

This work was carried out at the world-class Scientific Center “Photonics Center” and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2020-906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Smirnov.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, L.A., Mironov, V.A. & Litvak, A.G. Specific Features of the Self-Action Dynamics of Wave Packets with Initially Normal Group-Velocity Dispersion in Nonlinear Lattices. J. Exp. Theor. Phys. 134, 762–771 (2022). https://doi.org/10.1134/S1063776122060139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122060139

Navigation