Skip to main content
Log in

Instability of Solitons and Collapse of Acoustic Waves in Media with Positive Dispersion

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This article is a brief review of the results of studying the collapse of sound waves in media with positive dispersion, which is described in terms of the three-dimensional Kadomtsev–Petviashvili (KP) equation. The KP instability of one-dimensional solitons in the long-wavelength limit is considered using the expansion for the corresponding spectral problem. It is shown that the KP instability also takes place for two-dimensional solitons in the framework of the three-dimensional KP equation with positive dispersion. According to Kadomtsev (see Collective Effects in Plasma by B.B. Kadomtsev) this instability belongs to the self-focusing type. The nonlinear stage of this instability is a collapse. One of the collapse criteria is the Hamiltonian unboundedness from below for a fixed momentum projection coinciding with the L2-norm. This fact follows from scaling transformations, leaving this norm constant. For this reason, collapse can be represented as the process of falling a particle to the center in a self-consistent unbounded potential. It is shown that the radiation of waves from a region with a negative Hamiltonian, due to its unboundedness from below, promotes the collapse of the waves. This scenario was confirmed by numerical experiments. Two analytical approaches to the study of collapse are presented: using the variational method and the quasiclassical approximation. In contrast to the nonlinear Schrödinger equation (NLSE) with a focusing nonlinearity, a feature of the quasiclassical approach to describing acoustic collapse is that this method is proposed for the three-dimensional KP equation as a system with hydrodynamic nonlinearity. Within the framework of the quasiclassical description, a family of self-similar collapses is found. The upper bound of this family corresponds to a strong collapse, in which the energy captures into the singularity is finite. The existence of such a regime is also confirmed based on the variational approach. The other boundary of the collapsing hierarchy coincides with the self-similar solution of the three-dimensional KP equation, which describes the fastest weak collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl. 15, 539 (1970).

    ADS  Google Scholar 

  2. B. B. Kadomtsev, Collective Effects in Plasma (Fizmatgiz, Moscow, 1976) [in Russian].

    Google Scholar 

  3. E. A. Kuznetsov, S. L. Musher, and A. V. Shafarenko, JETP Lett. 37, 241 (1983).

    ADS  Google Scholar 

  4. E. A. Kuznetsov and S. L. Musher, Sov. Phys. JETP 64, 947 (1986).

    ADS  Google Scholar 

  5. V. E. Zakharov and E. A. Kuznetsov, Phys. Usp. 55, 535 (2012).

    Article  ADS  Google Scholar 

  6. V. E. Zakharov and E. A. Kuznetsov, Sov. Phys. JETP 64, 773 (1986).

    ADS  Google Scholar 

  7. V. L. Gurevich, Kinetics of Phonon Systems (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  8. E. P. Gross, Nuovo Cim. 20, 454 (1961).

    Article  ADS  Google Scholar 

  9. L. P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961).

    MathSciNet  Google Scholar 

  10. V. E. Zakharov and E. A. Kuznetsov, Phys. D (Amsterdam, Neth.) 8, 455 (1986).

  11. V. S. Dryuma, JETP Lett. 19, 387 (1974).

    ADS  Google Scholar 

  12. V. I. Petviashvili, Sov. J. Plasma Phys. 2, 257 (1976).

    ADS  Google Scholar 

  13. S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, and V. A. Matveev, Phys. Lett. A 63, 205 (1977).

    Article  ADS  Google Scholar 

  14. E. A. Kuznetsov and S. K. Turitsyn, Sov. Phys. JETP 55, 844 (1982).

    ADS  Google Scholar 

  15. R. Blaha, E. A. Kuznetsov, E. W. Laedke, K. H. Spatschek, in Nonlinear World, Proceedings of the 4th Workshop on Nonlinear and Turbulent Processes in Physics, Ed. by V. G. Bar’yakhtar et al. (World Scientific, Singapore, 1990), Vol. 1, p. 25.

  16. R. Blaha, E. W. Laedke, and K. H. Spatschek, Phys. D (Amsterdam, Neth.) 40, 249 (1989).

  17. E. A. Kuznetsov, Phys. Lett. A 101, 314 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  18. E. A. Kuznetsov and S. K. Turitsyn, Sov. Phys. JETP 67, 1583 (1988).

    ADS  Google Scholar 

  19. G. A. Schwartzlander, and C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).

    Article  ADS  Google Scholar 

  20. C. T. Law and G. A. Schwartzlander, Opt. Lett. 18, 586 (1993).

    Article  ADS  Google Scholar 

  21. D. E. Pelinovsky, Yu. A. Stepanyants, and Yu. S. Kivshar, Phys. Rev. E 51, 5016 (1995).

  22. C. A. Jones and P. H. Roberts, J. Phys. A 15, 2599 (1982).

    Article  ADS  Google Scholar 

  23. E. A. Kuznetsov and J. J. Rasmussen, Phys. Rev. E 51, 4479 (1995).

    Article  ADS  Google Scholar 

  24. S. C. Crow, AIAA J. 8, 2172 (1970).

    Article  ADS  Google Scholar 

  25. S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, Radiophys. Quantum Electron. 14, 1062 (1971).

    Article  ADS  Google Scholar 

  26. V. E. Zakharov, Sov. Phys. JETP 35, 908 (1972).

    ADS  Google Scholar 

  27. V. E. Zakharov and E. A. Kuznetsov, J. Exp. Theor. Phys. 86, 1035 (1998).

    Article  ADS  Google Scholar 

  28. R. Hirota, The Direct Method in Soliton Theory (Cambridge Univ. Press, Cambridge, 2004).

    Book  Google Scholar 

  29. Wen-Xiu Ma, Commun. Nonlin. Sci. Numer. Simul. 16, 2663 (2011).

    Article  Google Scholar 

  30. Chao Qian, Ji-Guang Rao, and Jing-Song He, Chin. Phys. Lett. 33, 110201 (2016).

  31. X. B. Wang, S. F. Tian, C. Y. Qin, and T. T. Zhang, Appl. Math. Lett. 72, 58 (2017).

    Article  MathSciNet  Google Scholar 

  32. J. J. Mao, S. F. Tian, X. J. Yan, and T. T. Zhang, Int. J. Numer. Methods Heat Fluid Flow 29, 3417 (2019).

    Article  Google Scholar 

  33. D.-D. Zhang, L. Wang, L. Liu, T.-X. Liu, and W.‑R. Sun, Commun. Theor. Phys. 73, 095001 (2021).

  34. O. V. Kaptsov and D. O. Kaptsov, J. Appl. Mech. Tech. Phys. 62, 649 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  35. E. A. Kuznetsov, A. M. Rubenchik and V. E. Zakharov, Phys. Rep. 142, 103 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  36. Yu. S. Kivshar and D. E. Pelinovsky, Phys. Rep. 331, 117 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  37. A. I. Dyachenko and E. A. Kuznetsov, Phys. D (Amsterdam, Neth.) 87, 301 (1995).

  38. V. I. Shrira, Trans. USSR Acad. Sci., Earth Sci. Sec. 308, 276 (1989).

    Google Scholar 

  39. D. E. Pelinovsky and Yu. A. Stepanyats, J. Exp. Theor. Phys. 77, 602 (1993).

  40. V. E. Zakharov, JETP Lett. 22, 172 (1975).

    ADS  Google Scholar 

  41. E. A. Kuznetsov, A. V. Mikhailov, and I. A. Shimokhin, Phys. D (Amsterdam, Neth.) 87, 201 (1995).

  42. A. V. Gurevich and L. P. Pitaevskii, JETP Lett. 17, 193 (1973);

    ADS  Google Scholar 

  43. Sov. Phys. JETP 38, 291 (1974).

  44. E. A. Kuznetsov and S. K. Turitsyn, Sov. J. Plasma Phys. 16, 524 (1990).

    Google Scholar 

  45. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 2011).

    MATH  Google Scholar 

  46. E. A. Kuznetsov and A. V. Mikhailov, Sov. Phys. JETP 40, 855 (1974).

    ADS  Google Scholar 

  47. E. A. Kuznetsov, S. K. Turitsyn, J. J. Rasmussen and K. Rypdal, Phys. D (Amsterdam, Neth.) 87, 273 (1995).

  48. S. K. Turitsyn and G. E. Falkovich, Sov. Phys. JETP 62, 146 (1985).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks A.M. Kamchatny and Yu.A. Stepanyants for useful discussions and remarks.

Funding

The author thanks the Russian Science Foundation for financial support of this work (grant 17-01-00622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kuznetsov.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, E.A. Instability of Solitons and Collapse of Acoustic Waves in Media with Positive Dispersion. J. Exp. Theor. Phys. 135, 121–135 (2022). https://doi.org/10.1134/S1063776122060103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122060103

Navigation