Skip to main content
Log in

Measurement of Dispersion Characteristics of Integrated Optical Microresonators and Generation of Coherent Optical Frequency Combs

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Optical frequency combs are a unique tool for fundamental metrology, spectroscopy, and a broad spectrum of applications. High-Q microresonators serve as a promising platform for the generation of coherent frequency combs. The key characteristics that determine the properties of an optical frequency comb are the microresonator dispersion parameters. We have developed and verified an original technique that allows one to measure the dispersion coefficients with a high accuracy for both crystalline and integrated microresonators with the free spectral ranges from gigahertz to terahertz. We demonstrate the generation of a soliton optical frequency comb in an integrated microresonator pumped by a laser diode in the self-injection locking regime at a wavelength of 1.55 μm and show that its spectral characteristics closely correspond to the measured microresonator dispersion parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).

    Article  ADS  Google Scholar 

  2. V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, et al., Opt. Commun. 158, 305 (1998).

    Article  ADS  Google Scholar 

  3. K. J. Vahala, Nature (London, U.K.) 424, 839 (2003).

    Article  ADS  Google Scholar 

  4. A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quant. Electron. 12, 3 (2006).

    Article  ADS  Google Scholar 

  5. A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quant. Electron. 12, 15 (2006).

    Article  ADS  Google Scholar 

  6. I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, et al., Opt. Commun. 265, 33 (2006).

    Article  ADS  Google Scholar 

  7. J. Ward and O. Benson, Laser Photon. Rev. 5, 553 (2011).

    Article  ADS  Google Scholar 

  8. D. V. Strekalov, C. Marquardt, A. B. Matsko, et al., J. Opt. 18, 123002 (2016).

  9. G. Lin, A. Coillet, and Y. K. Chembo, Adv. Opt. Photon. 9, 828 (2017).

    Article  Google Scholar 

  10. M. Kues, C. Reimer, J. M. Lukens, et al., Nat. Photon. 1, 170 (2019).

    Article  ADS  Google Scholar 

  11. N. M. Kondratiev, V. E. Lobanov, A. V. Cherenkov, et al., Opt. Express 25, 28167 (2017).

    Article  ADS  Google Scholar 

  12. P. Del’Haye, A. Schliesser, O. Arcizet, et al., Nature (London, U.K.) 450, 1214 (2007).

    Article  ADS  Google Scholar 

  13. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Phys. Rev. Lett. 93, 083904 (2004).

  14. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science (Washington, DC, U. S.) 332, 555 (2011).

    Article  ADS  Google Scholar 

  15. A. A. Savchenkov, A. B. Matsko, D. Strekalov, et al., Phys. Rev. Lett. 93, 243905 (2004).

  16. T. Herr, J. Riemensberger, C. Wang, et al., Nat. Photon. 6, 480 (2012).

    Article  ADS  Google Scholar 

  17. A. Pasquazi, M. Peccianti, L. Razzari, et al., Phys. Rep. 729, 1 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. L. Gaeta, M. Lipson, and T. J. Kippenberg, Nat. Photon. 13, 158 (2019).

    Article  ADS  Google Scholar 

  19. Y. K. Chembo, Nanophotonics 5, 214 (2016).

    Article  Google Scholar 

  20. T. Udem, R. Holzwarth, and T. W. Hänsch, Nature (London, U.K.) 416, 233 (2002).

    Article  ADS  Google Scholar 

  21. T. Fortier and E. Baumann, Comm. Phys. 2, 153 (2019).

    Article  ADS  Google Scholar 

  22. P. Marin-Palomo, J. N. Kemal, M. Karpov, et al., Nature (London, U.K.) 546, 274 (2017).

    Article  ADS  Google Scholar 

  23. A. Fülöp, M. Mazur, A. Lorences-Riesgo, et al., Nat. Commun. 9, 1598 (2018).

    Article  ADS  Google Scholar 

  24. M. G. Suh and K. J. Vahala, Science (Washington, DC, U. S.) 359, 884 (2018).

    Article  ADS  Google Scholar 

  25. P. Trocha, D. Ganin, M. Karpov, et al., Science (Washington, DC, U. S.) 359, 887 (2018).

    Article  ADS  Google Scholar 

  26. Q. F. Yang, B. Shen, H. Wang, et al., Science (Washington, DC, U. S.) 363, 965 (2019).

    Article  ADS  Google Scholar 

  27. E. Obrzud, M. Rainer, A. Harutyunyan, et al., Nat. Photon. 13, 31 (2019).

    Article  ADS  Google Scholar 

  28. M.-G. Suh, X. Yi, Y.-H. Lai, et al., Nat. Photon. 13, 25 (2019).

    Article  ADS  Google Scholar 

  29. Z. L. Newman, V. Maurice, T. Drake, et al., Optica 6, 680 (2019).

    Article  ADS  Google Scholar 

  30. W. Liang, V. Ilchenko, A. A. Eliyahu, et al., Nat. Commun. 6, 7371 (2015).

    Article  ADS  Google Scholar 

  31. D. T. Spencer, T. Drake, T. C. Briles, et al., Nature (London, UK) 557, 81 (2018).

    Article  ADS  Google Scholar 

  32. T. Herr, V. Brasch, J. D. Jost, et al., Nat. Photon. 8, 145 (2014).

    Article  ADS  Google Scholar 

  33. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodesky, Science (Washington, DC, U. S.) 361, eaan8083 (2018).

  34. C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, Phys. Rev. A 89, 063814 (2014).

  35. S. Fujii and T. Tanabe, Nanophotonics 9, 1087 (2020).

    Article  Google Scholar 

  36. C. Xu, J. Ma, Ch. Ke, et al., Appl. Phys. Lett. 114, 091104 (2019).

  37. V. Brasch, M. Geiselmann, T. Herr, et al., Science (Washington, DC, U. S.) 351, 357 (2016).

    Article  ADS  Google Scholar 

  38. N. L. B. Sayson, K. E. Webb, S. Coen, et al., Opt. Lett. 42, 5190 (2017).

    Article  ADS  Google Scholar 

  39. N. L. B. Sayson, T. Bi, V. Ng, et al., Nat. Photon. 13, 701 (2019).

    Article  ADS  Google Scholar 

  40. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, et al., Nat. Photon. 3, 529 (2009).

    Article  ADS  Google Scholar 

  41. L. C. Schneider, http://louisa-schneider.com/pdf/Silicon_Photonics_Class_Report_Louisa_Schneider.pdf.

  42. Z. Tian, S. S.-H. Yam, J. Barnes, et al., IEEE Photon. Technol. Lett. 20, 626 (2008).

    Article  ADS  Google Scholar 

  43. T. Herr, V. Brasch, J. D. Jost, et al., Phys. Rev. Lett. 113, 123901 (2014).

  44. B. Efron and C. Stein, Ann. Stat. 9, 586 (1981).

    Article  Google Scholar 

  45. Y. A. Demchenko and M. L. Gorodetsky, J. Opt. Soc. Am. B 30, 3056 (2013).

    Article  ADS  Google Scholar 

  46. A. V. Andrianov, M. P.Marisova, V. V. Dorofeev, and E. A. Anashkina, Results Phys. 17, 103128 (2020).

  47. N. M. Kondratiev and M. L. Gorodetsky, Phys. Lett. A 382, 2265 (2018).

    Article  ADS  Google Scholar 

  48. A. S. Raja, A. S. Voloshin, H. Guo, et al., Nat. Commun. 10, 680 (2019).

    Article  ADS  Google Scholar 

  49. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, J. Opt. Soc. Am. B 17, 1051 (2000).

    Article  ADS  Google Scholar 

  50. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).

    Article  ADS  Google Scholar 

  51. R. R. Galiev, N. G. Pavlov, N. M. Kondratiev, et al., Opt. Express 26, 30509 (2018).

    Article  ADS  Google Scholar 

  52. N. G. Pavlov, S. Koptyaev, G. V. Lihachev, et al., Nat. Photon. 12, 694 (2018).

    Article  ADS  Google Scholar 

  53. N. M. Kondratiev, V. E. Lobanov, E. A. Lonshakov, et al., Opt. Express 28, 38892 (2020).

    Article  ADS  Google Scholar 

  54. B. Shen, L. Chang, J. Liu, et al., Nature (London, U.K.) 582, 365 (2020).

    Article  ADS  Google Scholar 

  55. V. S. Il’chenko and M. L. Gorodetskii, Laser Phys. 2, 1004 (1992).

    Google Scholar 

  56. T. Calmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004).

    Article  ADS  Google Scholar 

  57. V. Brasch, M. Geiselmann, M. H. P. Pfeiffer, and T. J. Kippenberg, Opt. Express 24, 29312 (2016).

    Article  ADS  Google Scholar 

  58. T. Wildi, V. Brasch, J. Liu, et al., Opt. Lett. 44, 4447 (2019).

    Article  ADS  Google Scholar 

  59. X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, Opt. Lett. 41, 2037 (2016).

    Article  ADS  Google Scholar 

  60. S. Zhang, J. M. Silver, L. del Bino, et al., Optica 6, 206 (2019).

    Article  ADS  Google Scholar 

  61. A. S. Voloshin, N. M. Kondratiev, G. V. Lihachev, et al., Nat. Commun. 12, 235 (2021).

    Article  ADS  Google Scholar 

  62. A. E. Shitikov, A. S. Voloshin, I. K. Gorelov, et al., J. Exp. Theor. Phys. 134 (5) (2022).

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the Sharing Center of VNIIOFI (ckp.vniiofi.ru) and the Skoltech Sharing Center “High-Resolution Visualization” (https://www.skoltech.ru).

Funding

This work was supported by the Russian Science Foundation (project no. 21-72-00132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Dmitriev.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, N.Y., Voloshin, A.S., Kondratiev, N.M. et al. Measurement of Dispersion Characteristics of Integrated Optical Microresonators and Generation of Coherent Optical Frequency Combs. J. Exp. Theor. Phys. 135, 9–19 (2022). https://doi.org/10.1134/S1063776122060085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122060085

Navigation