Skip to main content
Log in

Simulation of Radiation Transfer in Terms of the Bethe–Salpeter Equation for Bilayer Biological Tissue Systems

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The intensity of radiation backscattering in the near infrared range is calculated for the bilayer model of a strongly heterogeneous medium that can be treated as the system of “skull–brain” biological tissues. The Monte Carlo simulation procedure for multiple scattering in a bilayer randomly heterogeneous system is described based on the Bethe–Salpeter equation. As the single-scattering indicatrix, the Henyey–Greenstein phase function is used. The dependences of the backscattering intensity on the distance along the head surface between the radiation source and the detector are calculated. The form of these dependences turns out to be sensitive to the change of system parameters such as the scattering indicatrix anisotropy, the layer thickness, and the laser radiation wavelength. This feature can be used in medical diagnostics. An alternative approach is proposed to the calculation of the probability density distribution for the photon free path length. It is shown that beginning from the source–detector distance on the order of several transport lengths, the calculated intensity is in good agreement with the predictions of the diffusion theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. L. Jacques, Phys. Med. Biol. 58, R37 (2013).

    Article  ADS  Google Scholar 

  2. D. J. Davies, Z. Su, M. T. Clancy, et al., J. Neurotrauma 32, 933 (2015).

    Article  Google Scholar 

  3. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostic (IPR Media, Moscow, 2021; SPIE Press, 2015).

  4. A. N. Bashkatov, A. V. Priezzhev, and V. V. Tuchin, Quantum Electron. 41, 283 (2011).

    Article  ADS  Google Scholar 

  5. D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, Appl. Opt. 45, 8142 (2006).

    Article  ADS  Google Scholar 

  6. M. Dehaes, P. E. Grant, D. D. Sliva, et al., Biomed. Opt. Express 2, 552 (2011).

    Article  Google Scholar 

  7. J. Selb, D. A. Boas, S.-T. Chan, et al., Neurophoton. 1, 015005 (2014).

  8. A. Sabeeh and V. V. Tuchin, J. Biomed. Photon. Eng. 6, 040201 (2020).

  9. R. Francis, B. Khan, G. Alexandrakis, et al., Biomed. Opt. Express 6, 3256 (2015).

    Article  Google Scholar 

  10. S. Mamani, L. Shi, T. Ahmed, et al., J. Biophotonics 11, e201800096 (2018).

  11. A. P. Tran, S. Yan, and Q. Fang, Neurophoton. 7, 015008 (2020).

  12. E. Zinchenko, N. Navolokin, A. Shirokov, et al., Biomed. Opt. Express 10, 4003 (2019).

    Article  Google Scholar 

  13. E. S. Papazoglou, M. D. Weingarten, S. Michael, et al., J. Biomed. Opt. 13, 044005 (2008).

  14. E. S. Papazoglou, M. T. Neidrauer, L. Zubkov, et al., J. Biomed. Opt. 14, 064032 (2009).

  15. S. Mahmoodkalayeh, M. A. Ansari, and V. V. Tuchin, Biomed. Opt. Express 10, 2795 (2019).

    Article  Google Scholar 

  16. M. S. Cano-Velazquez, N. Davoodzadeh, D. Halaney, et al., Biomed. Opt. Express 10, 3369 (2019).

    Article  Google Scholar 

  17. A. Kienle, M. S. Patterson, N. Dögnitz, et al., Appl. Opt. 37, 779 (1998).

    Article  ADS  Google Scholar 

  18. J. H. Choi, W. Martin, V. Yu. Toronov, et al., J. Biomed. Opt. 9, 221 (2004).

    Article  ADS  Google Scholar 

  19. M. A. Franceschini, S. Fantini, L. A. Paunescu, et al., Appl. Opt. 37, 7447 (1998).

    Article  ADS  Google Scholar 

  20. L. Wang, S. L. Jacques, and L. Q. Zheng, Comput. Meth. Prog. Bio. 47, 131 (1995).

    Article  Google Scholar 

  21. V. L. Kuzmin and A. Yu. Val’kov, JETP Lett. 105, 283 (2017).

    Article  ADS  Google Scholar 

  22. V. L. Kuzmin, A. Yu. Val’kov, and L. A. Zubkov, J. Exp. Theor. Phys. 128, 396 (2019).

    Article  ADS  Google Scholar 

  23. V. L. Kuzmin, V. P. Romanov, and E. V. Aksenova, Phys. Rev. E 65, 016601 (2001).

  24. V. L. Kuzmin, M. T. Neidrauer, D. Diaz, et al., J. Biomed. Opt. 20, 105006 (2015).

  25. L. Devroye, Non-Uniform Random Variate Generation (Springer, New York, 1986).

    Book  Google Scholar 

  26. T. H. Pham, O. Coquoz, J. B. Fishkin, et al., Rev. Sci. Instrum. 71, 2500 (2000).

    Article  ADS  Google Scholar 

  27. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, et al., J. Phys. D: Appl. Phys. 38, 2543 (2005).

    Article  ADS  Google Scholar 

  28. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, et al., Proc. SPIE 6163, 616310 (2006).

  29. J. D. Johansson, J. Biomed. Opt. 15, 0570059 (2010).

  30. E. A. Genina, A. N. Bashkatov, D. K. Tuchina, et al., Biomed. Opt. Express 10, 5182 (2019).

    Article  Google Scholar 

  31. T. Durduran, R. Choe, W. B. Baker, et al., Rep. Prog. Phys. 73, 076701 (2010).

  32. T. M. Nieuwenhuizen and J. M. Luck, Phys. Rev. E 48, 569 (1993).

    Article  ADS  Google Scholar 

  33. V. L. Kuzmin and A. Yu. Valkov, J. Quant. Spectrosc. Radiat. Transfer 272, 107760 (2021).

  34. D. Tamborini, P. Farzam, B. B. Zimmermann, et al., Neurophoton. 5, 011015 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. L. Kuzmin, Yu. A. Zhavoronkov, S. V. Ul’yanov or A. Yu. Valkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, V.L., Zhavoronkov, Y.A., Ul’yanov, S.V. et al. Simulation of Radiation Transfer in Terms of the Bethe–Salpeter Equation for Bilayer Biological Tissue Systems. J. Exp. Theor. Phys. 134, 661–668 (2022). https://doi.org/10.1134/S1063776122050090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122050090

Navigation