Skip to main content
Log in

Acceleration of Cosmic Rays to Energies above 1015 eV by Transrelativistic Shocks

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

MHD flows with transrelativistic 4-velocities Γβ ~ 1, which are realized in Ib/c-type supernovae and after the coalescence of neutron stars, are interesting as potential cosmic ray sources. We report on the results of simulation of acceleration of very high-energy cosmic rays in astrophysical objects with transrelativistic MHD flows and shock waves. A nonlinear model of transport and acceleration of ultrarelativistic particles is constructed with account for the back-reaction effect of accelerated particles on the local structure of the flow near a shock and the mechanisms of superadiabatic enhancement of fluctuating magnetic fields. The spectra of accelerated particles are calculated. It is shown that the maximal energies of protons accelerated by transrelativistic MHD flows can noticeably exceed 1015 eV and can contribute to the observed cosmic ray fluxes near the spectral knee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. L. Ginzburg and S. I. Syrovatskii, The Origin of Cosmic Rays (Akad. Nauk SSSR, Moscow, 1963; Pergamon, London, New York, 1964).

  2. A. M. Hillas, J. Phys. G 31, 95 (2005).

    Article  ADS  Google Scholar 

  3. M. Lemoine and E. Waxman, J. Cosmol. Astropart. Phys. 11, 009 (2009).

  4. K. V. Ptitsyna and S. V. Troitsky, Phys. Usp. 53, 691 (2010).

    Article  ADS  Google Scholar 

  5. J. H. Matthews, A. R. Bell, K. M. Blundell, and A. T. Araudo, Mon. Not. R. Astron. Soc. 482, 4303 (2019).

    Article  ADS  Google Scholar 

  6. G. T. Zatsepin and A. E. Chudakov, Sov. Phys. JETP 14, 469 (1962).

    Google Scholar 

  7. F. Aharonian, A. G. Akhperjanian, A. R. Bazer-Bachi, et al., Astron. Astrophys. 449, 223 (2006).

    Article  ADS  Google Scholar 

  8. F. Acero, M. Lemoine-Goumard, M. Renaud, et al., Astron. Astrophys. 580, 74 (2015).

    Article  Google Scholar 

  9. S. Funk, Ann. Rev. Nucl. Part. Sci. 65, 245 (2015).

    Article  ADS  Google Scholar 

  10. E. G. Berezhko, V. K. Elshin, and L. T. Ksenofontov, J. Exp. Theor. Phys. 82, 1 (1996).

    ADS  Google Scholar 

  11. D. C. Ellison, P. Slane, D. J. Patnaude, et al., Astrophys. J. 744, 39 (2012).

    Article  ADS  Google Scholar 

  12. V. Ptuskin, V. Zirakashvili, and Eun-Suk Seo, Astrophys. J. 763, 47 (2013).

    Article  ADS  Google Scholar 

  13. N. M. Budnev, A. Chiavassa, O. A. Gress, et al., Astropart. Phys. 117, 102406 (2020).

    Article  Google Scholar 

  14. A. M. Bykov, Phys. Usp. 61, 805 (2018).

    Article  ADS  Google Scholar 

  15. A. M. Bykov, D. C. Ellison, A. Marcowith, and S. M. Osipov, Space Sci. Rev. 214, 41 (2018).

    Article  ADS  Google Scholar 

  16. X.-Y. Wang, S. Razzaque, P. Mészáros, and Z.-G. Dai, Phys. Rev. D 76, 083009 (2007).

    Article  ADS  Google Scholar 

  17. R. Budnik, B. Katz, A. MacFadyen, et al., Astrophys. J. 673, 928 (2008).

    Article  ADS  Google Scholar 

  18. S. Chakraborti, A. Ray, A. M. Soderberg, et al., Nat. Commun. 2, 175 (2011).

    Article  ADS  Google Scholar 

  19. M. Lemoine and G. Pelletier, Mon. Not. R. Astron. Soc. 402, 321 (2010).

    Article  ADS  Google Scholar 

  20. B. Reville and A. Bell, Mon. Not. R. Astron. Soc. 439, 2050 (2014).

    Article  ADS  Google Scholar 

  21. A. R. Bell, A. T. Araudo, J. H. Matthews, and K. M. Blundell, Mon. Not. R. Astron. Soc. 471, 2364 (2018).

    Article  ADS  Google Scholar 

  22. R. A. Chevalier, Astrophys. J. 499, 810 (1998).

    Article  ADS  Google Scholar 

  23. M. Pohl, M. Hoshino, and J. Niemiec, Progr. Part. Nucl. Phys. 111, 103751 (2020).

    Article  Google Scholar 

  24. V. I. Romansky, A. M. Bykov, and S. M. Osipov, J. Phys.: Conf. Ser. 1038, 012022 (2018).

    Google Scholar 

  25. V. I. Romansky, A. M. Bykov, and S. M. Osipov, J. Phys.: Conf. Ser. 1040, 022005 (2019).

    Google Scholar 

  26. P. Crumley, D. Caprioli, S. Markoff, and A. Spitkovsky, Mon. Not. R. Astron. Soc. 485, 5105 (2019).

    Article  ADS  Google Scholar 

  27. A. Ligorini, J. Niemiec, O. Kobzar, et al., Mon. Not. R. Astron. Soc. 502, 5065 (2021).

    Article  ADS  Google Scholar 

  28. Y. Nagar and U. Keshet, Mon. Not. R. Astron. Soc. 501, 329 (2021).

    Article  ADS  Google Scholar 

  29. D. C. Ellison, D. C. Warren, and A. M. Bykov, Astrophys. J. 776, 46 (2013).

    Article  ADS  Google Scholar 

  30. A. M. Bykov, A. Brandenburg, M. A. Malkov, and S. M. Osipov, Space Sci. Rev. 178, 201 (2013).

    Article  ADS  Google Scholar 

  31. A. M. Bykov, D. C. Ellison, S. M. Osipov, and A. E. Vladimirov, Astrophys. J. 789, 137 (2014).

    Article  ADS  Google Scholar 

  32. J. Derouillat, A. Beck, F. Perez, et al., Comput. Phys. Commun. 222, 351 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  33. D. C. Ellison and D. C. Eichler, Astrophys. J. 286, 691 (1984).

    Article  ADS  Google Scholar 

  34. F. C. Jones and D. C. Ellison, Space Sci. Rev. 58, 259 (1991).

    Article  ADS  Google Scholar 

  35. D. C. Ellison, M. G. Baring, and F. C. Jones, Astrophys. J. 473, 1029 (1996).

    Article  ADS  Google Scholar 

  36. A. E. Vladimirov, A. M. Bykov, and D. C. Ellison, Astrophys. J. 688, 1084 (2008).

    Article  ADS  Google Scholar 

  37. A. E. Vladimirov, A. M. Bykov, and D. C. Ellison, Astrophys. J. Lett. 703, L29 (2009).

    Article  ADS  Google Scholar 

  38. A. E. Vladimirov, PhD Thesis (USA, 2009); https://arxiv.org/abs/0904.3760.

  39. A. R. Bell, Mon. Not. R. Astron. Soc. 353, 550 (2004).

    Article  ADS  Google Scholar 

  40. W. H. Matthaeus, S. Oughton, and Y. Zhou, Phys. Rev. E 79, 035401(R) (2009).

  41. A. M. Soderberg, S. Chakraborti, G. Pignata, et al., Nature (London, U.K.) 463, 513 (2010).

    Article  ADS  Google Scholar 

  42. W. Li, J. Leaman, R. Chornock, et al., Mon. Not. R. Astron. Soc. 412, 1441 (2011).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the reviewer of the article for constructive remark.

Funding

This study was supported by the Russian Science Foundation (project no. 21-72-20020). The results of this study were obtained using computer resources of the International Supercomputer Center of the Russian Academy of Sciences and the Supercomputer Center of the Peter the Great St. Petersburg Polytechnic University (scc.spbstu.ru).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Bykov or S. M. Osipov.

Additional information

This article was written for the special JETP issue dedicated to centenary of A.E. Chudakov

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, A.M., Osipov, S.M. & Romanskii, V.I. Acceleration of Cosmic Rays to Energies above 1015 eV by Transrelativistic Shocks. J. Exp. Theor. Phys. 134, 487–497 (2022). https://doi.org/10.1134/S1063776122040161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122040161

Navigation