Skip to main content
Log in

The Unreasonable Effectiveness of the Air-Fluorescence Technique in Determining the EAS Shower Maximum

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We review all existing air-fluorescence measurements of the elongation rate of extensive air showers (slope of mean EAS shower maximum Xmax vs. log of shower energy E) above 1017 eV. We find remarkable agreement for all current and historic experiments over a 30 yr period for the energy range from 1017 to 3 × 1018 eV. The mean elongation rate in this energy interval is near 80 g/cm2/decade. Above this energy, experiments in the Northern hemisphere are in good agreement with an average elongation rate of 48 ± 10 g/cm2/decade while Southern hemisphere experiments have a flatter elongation rate of 26 ± 2 g/cm2/decade. We point out that, given the agreement at lower energies, possible systematic reasons for this difference are unlikely. Given this, the world elongation rate data alone may indicate a composition difference of UHECR in the Northern and Southern hemisphere and thus a diversity of UHECR sources in the Northern and Southern sky.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. K. Greisen, Ann. Rev. Nucl. Sci 10, 63 (1960);

    Article  ADS  Google Scholar 

  2. J. Delvaille, F. Kendziorski, and K. Greisen, J. Phys. Soc. Jpn. 17 (Suppl. A-III), 76 (1962);

  3. K. Suga, in Proceedings of the 5th Interamerican Seminar on Cosmic Rays, La Paz, Bolivia (1962), Vol. 2, XLIX; A. E. Chudakov, in Proceedings of the 5th Interamerican Seminar on Cosmic Rays, La Paz, Bolivia (1962), Vol. 2, XLIX.

  4. G. L. Cassiday, R. Cooper, S. Corbato, et al., Astrophys. J. 356, 669 (1990).

    Article  ADS  Google Scholar 

  5. J. Linsley, in Proceedings of the 15th International Cosmic Rays Conference, Plovdiv, Bulgaria (1977), Vol. 8, p. 353.

  6. D. J. Bird, S. C. Corbato, H. Y. Dai, et al., Phys. Rev. Lett. 71, 3401 (1993).

    Article  ADS  Google Scholar 

  7. R. M. Baltrusaitis, G. L. Cassiday, R. Cooper, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 240, 410 (1985).

    Google Scholar 

  8. J. M. Matthews, in Proceedings of the 27th International Cosmic Rays Conference (2001);

  9. R. U. Abbasi, T. Abu-Zayyad, J. F. Aman, et al., Phys. Rev. Lett. 92, 151101 (2004).

    Article  ADS  Google Scholar 

  10. T. Abu-Zayyad, K. Belov, J. Boyer, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 450, 253 (2000);

    Google Scholar 

  11. T. Abu-Zayyad, K. Belov, D. J. Bird, et al., Astrophys. J. 557 (2001);

  12. A. Borione, C. E. Couvault, J. W. Cronin, et al., Nucl. Instrum. Methods Phys. Res. 346, 329 (1994).

    Article  ADS  Google Scholar 

  13. K. Martens, Nucl. Phys. B Proc. Suppl., 165 (2007).

  14. H. Shin, in Proceedings of 2021 International Cosmic Ray Conference ICRC, Berlin, PoS (ICRC2021), 305 (2021).

  15. R. U. Abbasi, T. Abu-Zayyad, M. Allen, et al., Astrophys. J. 909, 178 (2021).

    Article  ADS  Google Scholar 

  16. K. Fujita, in Proceedings of 2021 International Cosmic Ray Conference ICRC, Berlin, PoS (ICRC2021), 353 (2021).

  17. R. U. Abbasi, M. Abe, T. Abu-Zayyad, et al., Astropart. Phys. 64, 49 (2015).

    Article  ADS  Google Scholar 

  18. R. U. Abbasi, T. Abu-Zayyad, G. Archbold, et al., Astrophys. J. 622, 910 (2005).

    Article  ADS  Google Scholar 

  19. R. U. Abbasi, M. Abe, T. Abu-Zayyad, et al., Astrophys. J. 858, 76 (2018).

    Article  ADS  Google Scholar 

  20. A. Aab, P. Abreu, M. Aglietta, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 798, 172 (2015).

    Google Scholar 

  21. A. Aab, P. Abreu, M. Aglietta, et al., Phys. Rev. D 90, 122005 (2014).

    Article  ADS  Google Scholar 

  22. V. de Souza, in Proceedings of 2017 International Cosmic Ray Conference ICRC, Beijing, China, PoS (ICRC2017), 301 (2017).

  23. A. Watson, in Proceedings of UHECR 2018, EPJ Web of Conf. 210 (2019). https://doi.org/10.1051/epjconf/201921000001

  24. A. di Matteo, in Proceedings of 2021 International Cosmic Ray Conference ICRC, Berlin, PoS (ICRC2021), 308 (2021).

  25. K. Kawata, A. di Matteo, T. Fujii, et al., in Proceedings of 2019 International Cosmic Ray Conference ICRC, Madison, USA, PoS (ICRC2019), 310 (2019);

  26. T. Fujii, D. Ivanov, C. C. H. Jui, et al., in Proceedings of 2021 International Cosmic Ray Conference ICRC, Berlin, Pos (ICRC2021), 392 (2021).

  27. V. A. Belayev and A. E. Chudakov, Bull. USSR Acad. Sci., Phys. Ser. 30, 1700 (1966).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sokolsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolsky, P., D’Avignon, R. The Unreasonable Effectiveness of the Air-Fluorescence Technique in Determining the EAS Shower Maximum. J. Exp. Theor. Phys. 134, 459–468 (2022). https://doi.org/10.1134/S1063776122040100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122040100

Navigation