Skip to main content
Log in

Spaceborne Gravity Gradiometer: Ways To Improve the Accuracy of Earth’s Gravity Field Models

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Results of analysis for improving the space resolution of Earth’s gravity field static models and monthly models by optimizing the orbital parameters (major semiaxis and inclination) of a spacecraft with an onboard gradiometer that is in low-earth orbit are reported. Requirements to the orbits of a spacecraft that will be involved in an advanced gradiometric mission have been worked out. Numerical simulation has made it possible to find the elements of a spacecraft orbit that allow 100% coverage of the Earth’s surface by measurements (subsatellite tracks) with a space resolution of 0.3° × 0.3°. Such a resolution is twice as high and better than that of the Earth’s gravity field static models that were obtained in the GOCE mission data. The orbital configurations found allow construction of monthly models of the Earth’s gravity field with a space resolution of 0.9° × 0.9°, which is four times better than the resolution of models obtained in the GRACE mission. Instrumental requirements to main measuring equipment to be used in a forthcoming space gradiometric mission have been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. Pail, S. Bruinsma, F. Migliaccio, et al., J. Geod. 85, 819 (2011).

    Article  ADS  Google Scholar 

  2. J. Schall, A. Eicker, and J. Kusche, J. Geod. 88, 403 (2014).

    Article  ADS  Google Scholar 

  3. W. Yi, Space Res. 50, 371 (2012).

    Article  ADS  Google Scholar 

  4. W. Yi, R. Rummel, and T. Gruber, Stud. Geophys. Geod. 57, 174 (2013).

    Article  ADS  Google Scholar 

  5. R. Pail and G. Plank, J. Geod. 76, 462 (2002).

    Article  ADS  Google Scholar 

  6. R. Pail, B. Metzler, B. Lackner, et al., in Proceedings of the 3rd International GOCE User Workshop, Frascati, ESRIN, Italy (2006), p. 249.

  7. J. M. Brockmann, N. Zehentner, E. Höck, et al., Geophys. Res. Lett. 41, 8089 (2014).

    Article  ADS  Google Scholar 

  8. B. Hofmann-Wellenhor and H. Moritz, Physical Geodesy (Springer, Newfoundland, 2005).

    Google Scholar 

  9. M. van Gelderen and R. Koop, J. Geod. 71, 337 (1997).

    Article  ADS  Google Scholar 

  10. W. M. Kaula, Theory of Satellite Geodesy: Applications of Satellites to Geodesy (Dover, Michigan, 2000), p. 160.

  11. B. D. Tapley, S. Bettadpur, M. M. Watkins, et al., Geophys. Res. Lett. 31 (9), 4 (2004).

    Article  Google Scholar 

  12. K. Abich, A. Abramovici, B. Amparan, et al., Phys. Rev. Lett. 123, 031101 (2019).

    Article  ADS  Google Scholar 

  13. V. K. Milyukov, A. I. Filetkin, and A. S. Zhamkov, Astron. Rep. 65, 331 (2021).

    Article  ADS  Google Scholar 

  14. J. M. Picone, A. E. Hedin, D. P. Drob, et al., J. Geophys. Res.: Space Phys. 107, A12 (2002).

    Google Scholar 

  15. G. Petit and B. Luzum, IERS Technical Note No. 36 (Verlag des Bundesamtsfur Kartographie und Geodasie, Frankfurt-am-Main, 2010), p. 179.

    Google Scholar 

  16. M. V. Belikov and K. A. Taibatorov, Kinem. Fiz. Neb. Tel 6, 24 (1990).

    Google Scholar 

  17. O. Montenbruck and E. Gill, Satellite Orbits. Models, Methods and Applications (Springer, New York, 2000).

    Book  Google Scholar 

  18. V. K. Milyukov and Hsien-Chi Yeh, Astron. Rep. 62, 1003 (2018).

    Article  ADS  Google Scholar 

  19. P. Touboul, E. Willemenot, B. Foulon, et al., Boll. Geof. Teor. Appl. 40, 321 (1999).

    Google Scholar 

  20. Jun Luo, Yan-Zheng Bai, Lin Cai, et al., Class. Quantum Grav. 37, 185013 (2020).

    Article  ADS  Google Scholar 

  21. P. Bender, A. Brillet, I. Ciufolini, et al., LISA (Laser Interferometer Space Antenna): An International Project in the Field of Fundamental Physics, Space Pre-Phase A Report (Max-Planck-Inst. Quantenoptic, Garching, Germany, 1998).

    Google Scholar 

  22. J. Luo, L.-Sh. Chen, H.-Z. Duan, et al., Class. Quantum Grav. 33, 035010 (2016).

    Article  ADS  Google Scholar 

  23. M. Armano, H. Audley, G. Auger, et al., Phys. Rev. Lett. 116, 231101 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

This investigation was supported by the research–educational school “Fundamental and Applied Investigation of Space” at the Moscow State University and the Russian Foundation for Basic Research (grant no. 19-29-11008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Milyukov.

Additional information

This article was prepared for the special issue dedicated to the centenary of A. E. Chudakov

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milyukov, V.K., Filetkin, A.I. & Zhamkov, A.S. Spaceborne Gravity Gradiometer: Ways To Improve the Accuracy of Earth’s Gravity Field Models. J. Exp. Theor. Phys. 134, 511–522 (2022). https://doi.org/10.1134/S1063776122040070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122040070

Navigation