Skip to main content
Log in

Prediction of the Relaxation Kinetics of the Shear Modulus of Metallic Glasses during Crystallization Using Calorimetric Measurements

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The method based on Granato’s interstitialcy theory, which allows us to calculate the temperature dependence of shear modulus G using experimental calorimetry data, has been successfully tested on a number of bulk metallic glasses. The results of prediction in a wide temperature range, including the crystallization of both initial and relaxed metallic glasses, are presented for the first time. The error in calculating the temperature dependence of the shear modulus of metallic glass during crystallization does not exceed 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.  1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. V. Nemilov, Russ. J. Phys. Chem. 42, 726 (1968).

    Google Scholar 

  2. J. C. Dyre, N. B. Olsen, and T. Christensen, Phys. Rev. B 53, 2171 (1996).

    Article  ADS  Google Scholar 

  3. J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).

    Article  ADS  Google Scholar 

  4. W. L. Johnson and K. Samwer, Phys. Rev. Lett. 95, 195501 (2005).

  5. J. S. Harmon, M. D. Demetriou, W. L. Johnson, and K. Samwer, Phys. Rev. Lett. 99, 135502 (2007).

  6. W. H. Wang, Prog. Mater. Sci. 57, 487 (2012).

    Article  Google Scholar 

  7. A. N. Vasil’ev and Yu. P. Gaidukov, Sov. Phys. Usp. 26, 952 (1983).

    Article  ADS  Google Scholar 

  8. Y. P. Mitrofanov, D. P. Wang, A. S. Makarov, et al., Sci. Rep. 6, 23026 (2016).

    Article  ADS  Google Scholar 

  9. G. V. Afonin, Yu. P. Mitrofanov, N. P. Kobelev, and V. A. Khonik, J. Exp. Theor. Phys. 131, 582 (2020).

    Article  ADS  Google Scholar 

  10. A. C. Makarov, E. V. Goncharova, J. C. Qiao, N. P. Kobelev, and V. A. Khonik, J. Exp. Theor. Phys. 133, 175 (2021).

    Article  ADS  Google Scholar 

  11. A. S. Makarov, E. V. Goncharova, G. V. Afonin, J. C. Qiao, N. P. Kobelev, and V. A. Khonik, JETP Lett. 111, 586 (2020).

    Article  ADS  Google Scholar 

  12. V. Khonik and N. Kobelev, Metals 9, 605 (2019).

    Article  Google Scholar 

  13. A. Makarov, G. Afonin, Y. Mitrofanov, et al., Metals 10, 417 (2020).

    Article  Google Scholar 

  14. A. V. Granato, Phys. Rev. Lett. 68, 974 (1992).

    Article  ADS  Google Scholar 

  15. A. V. Granato, Eur. J. Phys. B 87, 18 (2014).

    Article  ADS  Google Scholar 

  16. E. V. Safonova, Yu. P. Mitrofanov, R. A. Konchakov, et al., J. Phys.: Condens. Matter 28, 215401 (2016).

  17. K. Nordlund, Y. Ashkenazy, R. S. Averback, and A. V. Granato, Europhys. Lett. 71, 625 (2005).

    Article  ADS  Google Scholar 

  18. V. A. Khonik, Chin. Phys. B 26, 016401 (2017).

  19. E. V. Goncharova, R. A. Konchakov, A. S. Makarov, et al., J. Non-Cryst. Sol. 471, 396 (2017).

    Google Scholar 

  20. G. V. Afonin, Yu. P. Mitrofanov, N. P. Kobelev, et al., Scr. Mater. 166, 6 (2019).

    Article  Google Scholar 

  21. A. S. Makarov, Yu. P. Mitrofanov, G. V. Afonin, et al., Scr. Mater. 168, 10 (2019).

    Article  Google Scholar 

  22. E. F. Lambson, W. A. Lambson, J. E. Macdonald, et al., Phys. Rev. B 33, 2380 (1986).

    Article  ADS  Google Scholar 

  23. I. R. Lu, G. P. Görler, and R. Willnecker, Appl. Phys. Lett. 80, 4534 (2002).

    Article  ADS  Google Scholar 

  24. L. Y. Watanabe, S. N. Roberts, N. Baca, et al., Mater. Sci. Eng. C 33, 4021 (2013).

    Article  Google Scholar 

  25. Z.-D. Zhu, E. Ma, and J. Xu, Intermetallics 46, 164 (2014).

    Article  Google Scholar 

  26. G. V. Afonin, S. V. Khonik, R. A. Konchakov, et al., Intermetallics 19, 1298 (2011).

    Article  Google Scholar 

  27. Q. K. Jiang, X. D. Wang, X. P. Nie, et al., Acta Mater. 56, 1785 (2008).

    Article  ADS  Google Scholar 

  28. G. V. Afonin, Yu. P. Mitrofanov, A. S. Makarov, et al., J. Non-Cryst. Sol. 475, 48 (2017).

    Google Scholar 

  29. A. S. Makarov, G. V. Afonin, R. A. Konchakov, et al., J. Non-Cryst. Sol. 558, 120672 (2021).

  30. G. V. Afonin, Yu. P. Mitrofanov, A. S. Makarov, et al., Acta Mater. 115, 204 (2016).

    Article  ADS  Google Scholar 

  31. N. P. Kobelev and V. A. Khonik, J. Non-Cryst. Sol. 427, 184 (2015).

    Google Scholar 

  32. T. Ichitsubo, E. Matsubara, T. Yamamoto, et al., Phys. Rev. Lett. 95, 245501 (2005).

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-62-46003.

Author information

Authors and Affiliations

Authors

Contributions

The article is dedicated to Yu.P. Mitrofanov, who made a significant contribution to this work but passed away early.

Corresponding author

Correspondence to G. V. Afonin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, A.S., Afonin, G.V., Qiao, J.C. et al. Prediction of the Relaxation Kinetics of the Shear Modulus of Metallic Glasses during Crystallization Using Calorimetric Measurements. J. Exp. Theor. Phys. 134, 314–320 (2022). https://doi.org/10.1134/S1063776122030153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122030153

Navigation