Skip to main content
Log in

Electrostatic Interaction of a Charged Dielectric Sphere with a Flat Charged Interface between Homogeneous Dielectrics

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The interaction of two charged dielectric spheres, the radius of one of which is much larger than the radius of the other sphere, is considered for small distances between their surfaces. Analytic solutions are obtained for the expansion coefficients of the potential for large multipole moments. Exact analytic expressions are derived for the interaction force in the method of expansion of the potential in the bispherical coordinate system in the case when the permittivity of one of the spheres coincides with the permittivity of the medium in which the spheres are located. A transition is made to the case of an infinitely large radius of the sphere with the permittivity differing from that of the medium. It is shown that these solutions coincide with the familiar solution to problems of interaction of a point charge with a dielectric sphere and with a flat charged interface between the dielectrics. A transition is made to an infinitely large radius of one of the spheres in the case when the permittivities of both spheres differ from that of the medium, and analytic solution is obtained to the problem of interaction of a charged dielectric sphere with a flat charged interface between homogeneous dielectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. W. Home, Brit. J. Hist. Sci. 16, 239 (1983).

    Article  Google Scholar 

  2. J. R. Hoffman and A.-M. Ampére, Poisson’s 1812 Electricity Memoir (Cambridge Univ. Press, Cambridge, 1995), p. 113.

    Google Scholar 

  3. W. Thomson, Reprint of Papers on Electrostatics and Magnetism (Macmillan, London, 1884), p. 86.

    Google Scholar 

  4. J. C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon, Oxford, 1891).

    MATH  Google Scholar 

  5. V. R. Munirov and A. V. Filippov, J. Exp. Theor. Phys. 117, 809 (2013).

    Article  ADS  Google Scholar 

  6. E. B. Lindgren, H. K. Chan, A. J. Stace, and E. Besley, Phys. Chem. Chem. Phys. 18, 5883 (2016).

    Article  Google Scholar 

  7. A. Khachatourian, H.-K. Chan, A. J. Stace, and E. Bichoutskaia, J. Chem. Phys. 140, 074107 (2014).

  8. A. V. Filippov, X. Chen, C. Harris, A. J. Stace, and E. Besley, J. Chem. Phys. 151, 154113 (2019).

  9. M. Majic, J. Quant. Spectrosc. Radiat. Transfer 276, 107945 (2021).

  10. J. Baptiste, C. Williamson, J. Fox, A. J. Stace, M. Hassan, S. Braun, and E. Besley, Atmos. Chem. Phys. 21, 8735 (2021).

    Article  ADS  Google Scholar 

  11. A. T. Pérez and R. Fernández-Mateo, J. Electrostat. 112, 103601 (2021).

  12. Y. Nakajima and T. Sato, J. Electrostatics 45, 213 (1999).

  13. E. Bichoutskaia, A. L. Boatwright, A. Khachatourian, and A. J. Stace, J. Chem. Phys. 133, 024105 (2010).

  14. T. B. Jones and T. B. Jones, Electromechanics of Particles (Cambridge Univ. Press, Cambridge, 2005).

    Google Scholar 

  15. A. Castellanos, Adv. Phys. 54, 263 (2005).

    Article  ADS  Google Scholar 

  16. X. Meng, J. Zhu, and J. Zhang, J. Phys. D 42, 065201 (2009).

  17. B. Gady, D. Schleef, R. Reifenberger, D. Rimai, and L. P. de Mejo, Phys. Rev. B 53, 8065 (1996).

    Article  ADS  Google Scholar 

  18. B. Gady, R. Reifenberger, D. S. Rimai, and L. P. de Mejo, Langmuir 13, 2533 (1997).

    Article  Google Scholar 

  19. Y. Liu, C. Song, G. Lv, N. Chen, H. Zhou, and X. Jing, Appl. Surf. Sci. 433, 450 (2018).

    Article  ADS  Google Scholar 

  20. M. C. Stevenson, S. P. Beaudoin, and D. S. Corti, J. Phys. Chem. C 124, 3014 (2020).

    Article  Google Scholar 

  21. M. C. Stevenson, S. P. Beaudoin, and D. S. Corti, J. Phys. Chem. C 125, 20003 (2021).

    Article  Google Scholar 

  22. H. Zhou, M. Götzinger, and W. Peukert, Powder Technol. 135136, 82 (2003).

  23. Y. Gao, E. Tian, and J. Mo, ACS EST Eng. 1, 1449 (2021).

    Article  Google Scholar 

  24. V. V. Batygin and I. N. Toptygin, Collection of Problems in Electrodynamics (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  25. W. R. Smythe, Static and Dynamic Electricity (Taylor and Francis, New York, 1950).

    MATH  Google Scholar 

  26. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

    MATH  Google Scholar 

  27. A. V. Filippov, J. Exp. Theor. Phys. 109, 516 (2009).

    Article  ADS  Google Scholar 

  28. A. V. Filippov, Contrib. Plasma Phys. 49, 433 (2009).

    ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2020-785).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Filippov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, A.V. Electrostatic Interaction of a Charged Dielectric Sphere with a Flat Charged Interface between Homogeneous Dielectrics. J. Exp. Theor. Phys. 134, 590–599 (2022). https://doi.org/10.1134/S1063776122030141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122030141

Navigation