Skip to main content
Log in

Solution of the Self-Organized Critical Manna Model in Space Dimensions 2 to 4

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The Manna model—the conservative isotropic self-organized critical sandpile model—is studied. The results of computer simulation in two-, three-, and four-dimensional formulations, as well as an analytical solution for space dimensions between the lower and upper critical dimensions, are presented for this model. The solution is based on the construction of a mesolevel model formulated in terms of the excitation density, its correlation length, and the average activity and the boundary width of the avalanche region. The indices are calculated by two independent methods: on the basis of the renormalization of stochastic differential equations and by reducing the occurring processes to random walks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. S. Manna, J. Phys. A 24, L363 (1991).

    Article  ADS  Google Scholar 

  2. G. Pruessner, Self-Organised Criticality: Theory, Models and Characterisation (Cambridge Univ. Press, New York, 2012).

    Book  Google Scholar 

  3. A. V. Podlazov, Izvestiya VUZ. Applied Nonlinear Dynamics 21, 69 (2013).

  4. A. V. Podlazov, Izvestiya VUZ. Applied Nonlinear Dynamics 24, 39 (2016).

  5. P. Bak, How Nature Works: The Science of Self-Organized Criticality (Springer, New York, 1996).

    Book  Google Scholar 

  6. D. Sornette, A. Johansen, and I. Dornic, J. Phys. I (Fr.) 5, 325 (1995).

    Article  ADS  Google Scholar 

  7. S. Clar, B. Drossel, and F. Schwabl, J. Phys.: Condens. Matter 8, 6803 (1996).

    ADS  Google Scholar 

  8. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).

    Article  ADS  Google Scholar 

  9. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38, 364 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Dhar and R. Ramaswamy, Phys. Rev. Lett. 63, 1659 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Pastor-Satorras and A. Vespignani, J. Phys. A 33, L33 (2000).

    Article  ADS  Google Scholar 

  12. M. Kloster, S. Maslov, and C. Tang, Phys. Rev. E 63, 026111 (2001).

  13. E. Milshtein, O. Biham, and S. Solomon, Phys. Rev. E 58, 303 (1998).

    Article  ADS  Google Scholar 

  14. S. Lübeck and K. D. Usadel, Phys. Rev. E 56, 5138 (1997).

    Article  ADS  Google Scholar 

  15. V. B. Priezzhev, J. Stat. Phys. 98, 667 (2000).

    Article  MathSciNet  Google Scholar 

  16. D. V. Ktitarev, S. Lübeck, P. Grassberger, and V. B. Priezzhev, Phys. Rev. E 61, 81 (2000).

    Article  ADS  Google Scholar 

  17. D. Dhar, Phys. Rev. Lett. 64, 1613 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  18. S. N. Majumdar and D. Dhar, Phys. A (Amsterdam, Neth.) 185, 129 (1992).

  19. D. Dhar and S. S. Manna, Phys. Rev. E 49, 2684 (1994).

    Article  ADS  Google Scholar 

  20. V. B. Priezzhev, D. V. Ktitarev, and E. V. Ivashkevich, Phys. Rev. Lett. 76, 2093 (1996).

    Article  ADS  Google Scholar 

  21. C.-K. Hu, E. V. Ivashkevich, C.-Y. Lin, and V. B. Priezzhev, Phys. Rev. Lett. 85, 4048 (2000).

    Article  ADS  Google Scholar 

  22. H. G. E. Hentschel and F. Family, Phys. Rev. Lett. 66, 1982 (1991).

    Article  ADS  Google Scholar 

  23. T. E. Harris, The Theory of Branching Processes (Springer, Berlin, 1963).

    Book  Google Scholar 

  24. R. Dickman, T. Tomé, and M. J. de Oliveira, Phys. Rev. E 66, 016111 (2002).

  25. S. Lübeck, Phys. Rev. E 61, 204 (2000).

    Article  ADS  Google Scholar 

  26. M. Alava and M. A. Muñoz, Phys. Rev. E 65, 026145 (2002).

  27. S. Lübeck and P. C. Heger, Phys. Rev. E 68, 056102 (2003).

  28. H. N. Huynh, G. Pruessner, and L. Y. Chew, J. Stat. Mech. 2011, P09024 (2011).

  29. S. Lübeck and K. D. Usadel, Phys. Rev. E 55, 4095 (1997).

    Article  ADS  Google Scholar 

  30. A. Chessa, H. E. Stanley, A. Vespignani, and S. Zapperi, Phys. Rev. E 59, R12 (1999).

    Article  ADS  Google Scholar 

  31. A. Chessa, A. Vespignani, and S. Zapperi, Comput. Phys. Commun. 121–122, 299 (1999).

  32. R. Pastor-Satorras and A. Vespignani, Eur. Phys. J. B 19, 583 (2001).

    Article  ADS  Google Scholar 

  33. Y.-C. Zhang, Phys. Rev. Lett. 63, 470 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Podlazov.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlazov, A.V. Solution of the Self-Organized Critical Manna Model in Space Dimensions 2 to 4. J. Exp. Theor. Phys. 134, 350–363 (2022). https://doi.org/10.1134/S1063776122030104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122030104

Navigation