Skip to main content
Log in

Elastoplastic and Polymorphic Transformations in Iron Films Loaded by Ultrashort Laser Shock Waves

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The results of experimental studies of the laser shock waves initiated by a picosecond pulse in iron are presented. Experimental measurements are processed and analyzed using theoretical approaches and numerical simulation. Interest in picosecond actions is caused by uniquely high strain rates, in particular, the dependence of the thresholds of elastoplastic and polymorphic transformations on the strain rate. Investigations are necessary for the development of the field of laser hardening of metals. The first steps in this direction have been taken, although this kind of approach to laser forging hardening is already widely used in practice. Modern developments in the field of shock wave generation and their experimental diagnostics are used, and the related methods of theoretical interpretation of experimental data are being developed. The difficulty lies in the picosecond time scale, since the diagnostics of experiments is limited by kinematics, namely, measuring the coordinates of the free surface. To elucidate the polymorphic transformation kinetics on picosecond time scales, the technique of inverse analysis of the free surface velocity is used for the first time. This technique is validated using the results of hydrodynamic and molecular dynamics simulation with direct extraction of mechanical stresses and strains. A theoretical study of reconstructed free surface velocity profiles by traditional methods confirms the results obtained in the field of their applicability, specifically, on elastic and plastic shock wave fronts. The transformation of iron into the ε phase takes place in the initial region of shock wave propagation, as long as a shock wave has a sufficient amplitude. The cause is a pressure limitation of 40 GPa because of optical breakdown in glass and shock wave attenuation during wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. S. I. Anisimov, A. M. Prokhorov, and V. E. Fortov, Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1081 (1982).

    Google Scholar 

  2. S. I. Anisimov, A. M. Prokhorov, and V. E. Fortov, Sov. Phys. Usp. 27, 181 (1984).

    Article  ADS  Google Scholar 

  3. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Sov. Phys. JETP 39, 375 (1974).

    ADS  Google Scholar 

  4. N. A. Inogamov, V. V. Zhakhovskii, C. I. Ashitkov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, K. Nishihara, and V. E. Fortov, J. Exp. Theor. Phys. 107, 1 (2008).

    Article  ADS  Google Scholar 

  5. N. A. Inogamov, V. A. Khokhlov, Yu. V. Petrov, and V. V. Zhakhovsky, Opt. Quant. Electron. 52, 63 (2020).

    Article  Google Scholar 

  6. V. V. Zhakhovskii and N. A. Inogamov, JETP Lett. 92, 521 (2010).

    Article  ADS  Google Scholar 

  7. N. A. Inogamov, A. M. Oparin, Yu. V. Petrov, et al., JETP Lett. 69, 310 (1999).

    Article  ADS  Google Scholar 

  8. S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishihara, A. M. Oparin, and Yu. V. Petrov, JETP Lett. 77, 606 (2003).

    Article  ADS  Google Scholar 

  9. R. Fabbro, J. Fournier, P. Ballard, et al., J. Appl. Phys. 68, 775 (1990).

    Article  ADS  Google Scholar 

  10. N. A. Inogamov, V. A. Khokhlov, and V. V. Zhakhovskii, JETP Lett. 108, 439 (2018).

    Article  ADS  Google Scholar 

  11. Yu. V. Petrov, N. A. Inogamov, V. V. Zhakhovsky, and V. A. Khokhlov, Contrib. Plasma Phys. 59, e201800180 (2019).

  12. C. A. Bolme, S. D. McGrane, D. S. Moore, and D. J. Funk, J. Appl. Phys. 102, 033513 (2007).

  13. M. R. Armstrong, J. C. Crowhurst, S. Bastea, and J. M. Zaug, J. Appl. Phys. 108, 023511 (2010).

  14. S. I. Ashitkov, M. B. Agranat, G. I. Kanel’, P. S. Komarov, and V. E. Fortov, JETP Lett. 92, 516 (2010).

    Article  ADS  Google Scholar 

  15. V. H. Whitley, S. D. McGrane, D. E. Eakins, et al., J. Appl. Phys. 109, 013505 (2011).

  16. J. C. Crowhurst, M. R. Armstrong, K. B. Knight, et al., Phys. Rev. Lett. 107144302 (2011).

  17. R. F. Smith, J. H. Eggert, R. E. Rudd, et al., J. Appl. Phys. 110, 123515 (2011).

  18. G. I. Kanel, AIP Conf. Proc. 1426, 939 (2012).

    Article  ADS  Google Scholar 

  19. S. I. Ashitkov, M. B. Agranat, G. I. Kanel, and V. E. Fortov, AIP Conf. Proc. 1426, 1081 (2012).

    Article  ADS  Google Scholar 

  20. S. I. Ashitkov, P. S. Komarov, M. B. Agranat, G. I. Kanel, and V. E. Fortov, JETP Lett. 98, 384 (2013).

    Article  ADS  Google Scholar 

  21. J. C. Crowhurst, B. W. Reed, M. R. Armstrong, et al., J. Appl. Phys. 115, 113506 (2014).

  22. S. I. Ashitkov, P. S. Komarov, E. V. Struleva, M. B. Agranat, and G. I. Kanel, JETP Lett. 101, 276 (2015).

    Article  ADS  Google Scholar 

  23. V. V. Zhakhovsky, M. M. Budzevich, N. A. Inogamov, et al., Phys. Rev. Lett. 107, 135502 (2011).

  24. N. A. Inogamov, V. V. Zhakhovskii, V. A. Khokhlov, and V. V. Shepelev, JETP Lett. 93, 226 (2011).

    Article  ADS  Google Scholar 

  25. B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, Phys. Rev. B 87, 054109 (2013).

  26. V. V. Zhakhovsky, N. A. Inogamov, B. J. Demaske, et al., J. Phys.: Conf. Ser. 500, 172007 (2014).

  27. R. Perriot, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, J. Phys.: Conf. Ser. 500, 172008 (2014).

  28. K. Khishchenko and A. Mayer, Int. J. Mech. Sci. 189, 105971 (2020).

  29. R. Evans, A. D. Badger, F. Fallies, et al., Phys. Rev. Lett. 77, 3359 (1996).

    Article  ADS  Google Scholar 

  30. K. T. Gahagan, D. S. Moore, D. J. Funk, et al., Phys. Rev. Lett. 85, 3205 (2000).

    Article  ADS  Google Scholar 

  31. D. J. Funk, D. S. Moore, K. T. Gahagan, et al., Phys. Rev. B 64, 115114 (2001).

  32. K. T. Gahagan, D. S. Moore, D. J. Funk, et al., J. Appl. Phys. 92, 3679 (2002).

    Article  ADS  Google Scholar 

  33. T. Sano, T. Eimura, R. Kashiwabara, et al., J. Laser Appl. 29, 012005 (2017).

  34. T. Kawashima, T. Sano, A. Hirose, et al., J. Mater. Proc. Technol. 262, 111 (2018).

    Article  Google Scholar 

  35. U. Trdan, T. Sano, D. Klobcar, et al., Corros. Sci. 143, 46 (2018).

    Article  Google Scholar 

  36. J. D. G. Greener, E. de Lima Savi, A. V. Akimov, et al., ACS Nano 13, 11530 (2019).

    Article  Google Scholar 

  37. Y. Wang, D. H. Hurley, Z. Hua, et al., Nat. Commun. 11, 1597 (2020).

    Article  ADS  Google Scholar 

  38. E. I. Urazakov and L. A. Fal’kovskii, Sov. Phys. JETP 36, 1214 (1973).

    ADS  Google Scholar 

  39. V. V. Kosachev, Yu. N. Lokhov, and V. N. Chukov, Sov. Phys. JETP 67, 1825 (1988).

    ADS  Google Scholar 

  40. Y. Sugawara, O. B. Wright, O. Matsuda, et al., Phys. Rev. Lett. 88, 185504 (2002).

  41. S. I. Ashitkov, V. V. Zhakhovsky, N. A. Inogamov, et al., AIP Conf. Proc. 1793, 100035 (2017).

  42. V. V. Zhakhovsky, K. P. Migdal, N. A. Inogamov, and S. I. Anisimov, AIP Conf. Proc. 1793, 070003 (2017).

  43. G. I. Kanel’, V. E. Fortov, and S. V. Razorenov, Phys. Usp. 50, 771 (2007).

    Article  ADS  Google Scholar 

  44. G. I. Kanel’, E. B. Zaretskii, S. V. Razorenov, et al., Phys. Usp. 60, 415 (2017).

    Google Scholar 

  45. G. I. Kanel’, S. V. Razorenov, G. V. Garkushin, S. I. Ashitkov, P. S. Komarov, and M. B. Agranat, Phys. Solid State 56, 1569 (2014).

    Article  ADS  Google Scholar 

  46. L. V. Al’tshuler, Sov. Phys. Usp. 8, 52 (1965).

    Article  ADS  Google Scholar 

  47. G. I. Kerley, Report SAND93-0027 (Sandia Natl. Labor., Albuquerque, 1993).

  48. D. Bancroft, E. L. Peterson, and S. Minshall, J. Appl. Phys. 27, 291 (1956).

    Article  ADS  Google Scholar 

  49. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 45, 4872 (1974).

    Article  ADS  Google Scholar 

  50. G. E. Duvall and R. A. Graham, Rev. Mod. Phys. 49, 523 (1977).

    Article  ADS  Google Scholar 

  51. A. V. Anan’in, A. N. Dremin, and G. I. Kanel’, Fiz. Goreniya Vzryva 3, 93 (1981).

    Google Scholar 

  52. V. D. Gluzman, G. I. Kanel’, V. F. Loskutov, et al., Probl. Prochn. 8, 52 (1985).

    Google Scholar 

  53. S. A. Dyachkov, D. K. Ilnitsky, A. N. Parshikov, and V. V. Zhakhovsky, J. Phys.: Conf. Ser. 1556, 012032 (2020).

  54. J. P. Geindre, P. Audebert, S. Rebibo, and J. C. Gauthier, Opt. Lett. 26, 1612 (2001).

    Article  ADS  Google Scholar 

  55. S. Ogata, J. Li, N. Hirosaki, Y. Shibutani, and S. Yip, Phys. Rev. B 70, 104104 (2004).

  56. D. M. Clatterbuck, D. C. Chrzan, and J. W. Morris, Acta Mater. 51, 2271 (2003).

    Article  ADS  Google Scholar 

  57. J. B. Aidun and Y. M. Gupta, J. Appl. Phys. 69, 6998 (1991).

    Article  ADS  Google Scholar 

  58. J. C. Boettger and D. C. Wallace, Phys. Rev. B 55, 2840 (1997).

    Article  ADS  Google Scholar 

  59. B. W. Reed, J. S. Stolken, R. W. Minich, and M. Kumar, J. Appl. Phys. 110, 113505 (2011).

  60. B. W. Reed, J. Reed Patterson, D. C. Swift, et al., J. Appl. Phys. 110, 113506 (2011).

  61. T. Q. Qiu and C. L. Tien, J. Heat Transfer 115, 835 (1993).

    Article  Google Scholar 

  62. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, J. Opt. Soc. Am. B 23, 1954 (2006).

    Article  ADS  Google Scholar 

  63. N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, J. Exp. Theor. Phys. 127, 79 (2018).

    Article  ADS  Google Scholar 

  64. S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, and V. A. Khokhlov, J. Exp. Theor. Phys. 103, 183 (2006).

    Article  ADS  Google Scholar 

  65. N. A. Inogamov, S. I. Anisimov, Yu. V. Petrov, et al., Proc. SPIE 7005, 70052F (2008).

  66. S. I. Ashitkov, P. S. Komarov, V. V. Zhakhovsky, et al., J. Phys.: Conf. Ser. 774, 012097 (2016).

  67. K. V. Khishchenko, J. Phys.: Conf. Ser. 98, 032023 (2008).

  68. K. V. Khishchenko, J. Phys.: Conf. Ser. 653, 012081 (2015).

  69. K. V. Khichshenko, Math. Montisnigri XL, 140 (2017).

    Google Scholar 

  70. Yu. Petrov, K. Migdal, N. Inogamov, et al., Data in Brief 28, 104980 (2020).

  71. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Boston, 1985).

    Google Scholar 

  72. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).

    Article  ADS  Google Scholar 

  73. W. Lechner and C. Dellago, J. Chem. Phys. 129, 114707 (2008).

  74. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B 58, 11085 (1998).

    Article  ADS  Google Scholar 

  75. B. A. Klumov, S. A. Khrapak, and G. E. Morfill, Phys. Rev. B 83, 184105 (2011).

  76. H. Hwang, E. Galtier, H. Cynn, et al., Sci. Adv. 6, eaaz5132 (2020).

  77. R. Piessens, E. D. Doncker-Kapenga, C. Ueberhuber, and D. Kahaner, Quadpack: A Subroutine Package for Automatic Integration (Springer, Berlin, 2011).

    MATH  Google Scholar 

  78. Th. Kluyver, B. Ragan-Kelley, F. Pérez, et al., Positioning and Power in Academic Publishing: Players, Agents and Agendas (IOS Press, Amsterdam, 2016), p. 87.

    Google Scholar 

  79. Th. J. Ahrens, in Shock Wave Experiments (Springer, Dordrecht, 2007), p. 912.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank K.V. Khishchenko for providing the equations of state of iron and glass and Yu.V. Petrov for the analytical formulas for calculating the electronic properties in transition metals.

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (S.I.A., E.V.S., and P.S.K., state assignment OIVT no. 075-00892-20-00; V.A.Kh. and N.A.I., state assignment ITF no. 00029-2019-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Murzov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murzov, S.A., Ashitkov, S.I., Struleva, E.V. et al. Elastoplastic and Polymorphic Transformations in Iron Films Loaded by Ultrashort Laser Shock Waves. J. Exp. Theor. Phys. 134, 263–276 (2022). https://doi.org/10.1134/S1063776122030098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122030098

Navigation