Skip to main content
Log in

Poincare Waves and Rossby Waves in Compressible Shallow Water Flows

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The shallow water approximation is generalized for describing large-scale flow of a liquid in the gravity field with a free surface. The classical shallow water equations are an alternative to the solution of the complete system of hydrodynamics equations in the gravity force field; however, the classical approximation does not take into account the density nonuniformity of a liquid layer. We have analyzed the flow of a thin layer of a rotating liquid with a free surface with account for the compressibility effects. We have obtained a system of quasi-linear differential equations describing the flow of a compressible liquid in the shallow water approximation. The solutions to this system have been obtained in the form of linear Poincare waves on the f plane and the Rossby waves on the β plane in compressed flows. The nonlinear dynamics of the Rossby waves in compressible flows is analyzed using the method of multiscale expansions. The resulting three-wave equations for the amplitudes of interacting waves are analyzed for parametric instabilities, and their increments are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. M.-L. E. Timmermans, J. R. Lister, and H. E. Huppert, J. Fluid Mech. 445, 305 (2001).

    Article  ADS  Google Scholar 

  2. C. K. Batchelor and G. Batchelor, An Introduction to Fluid Dynamics (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  3. A. M. Fridman and N. N. Gorkavyi, Physics of Planetary Rings: Celestial Mechanics of Continuous Media (Springer, New York, 2013).

    MATH  Google Scholar 

  4. J. D. Parsons, Geophys. Res. Lett. 27, 2345 (2000).

    Article  ADS  Google Scholar 

  5. F. Dobran, A. Neri, and G. Macedonio, J. Geophys. Res.: Solid Earth 98, 4231 (1993).

    Article  Google Scholar 

  6. G. A. Valentine and K. H. Wohletz, J. Geophys. Res.: Solid Earth 94, 1867 (1989).

    Article  Google Scholar 

  7. C. Ancey, J. Non-Newton. Fluid Mech. 142, 4 (2007).

    Google Scholar 

  8. C. Ancey, A. Davison, T. Böhm, M. Jodeau, and P. Frey, J. Fluid Mech. 595, 83 (2008).

    Article  ADS  Google Scholar 

  9. K. V. Karel’skii, A. S. Petrosyan, and A. V. Chernyak, J. Exp. Theor. Phys. 114, 1058 (2012).

    Article  ADS  Google Scholar 

  10. K. V. Karel’skii, A. S. Petrosyan, and A. V. Chernyak, J. Exp. Theor. Phys. 116, 680 (2013).

    Article  ADS  Google Scholar 

  11. C. B. Vreugdenhil, Numerical Methods for Shallow-Water Flow, Vol. 13 of Water Science and Technology Library (Springer, New York, 1994).

  12. K. Karelsky, A. Petrosyan, and S. Tarasevich, Phys. Scr. 2013, 014024 (2013).

  13. A. Chernyak, K. Karelsky, and A. Petrosyan, Phys. Scr. 2013, 014041 (2013).

  14. S. Lantz and Y. Fan, Astrophys. J. Suppl. Ser. 121, 247 (1999).

    Article  ADS  Google Scholar 

  15. R. Klein, Theor. Comput. Fluid Dyn. 23, 161 (2009).

    Article  Google Scholar 

  16. D. R. Durran, J. Atmos. Sci. 46, 1453 (1989).

    Article  ADS  Google Scholar 

  17. A. E. Gill, in Atmosphere-Ocean Dynamics (Elsevier, Amsterdam, 2016), p. 205.

    Google Scholar 

  18. G. K. Vallis, in Atmospheric and Oceanic Fluid Dynamics (Cambridge Univ. Press, Cambridge, 2017), p. 124.

    Book  Google Scholar 

  19. G. Falkovich, Fluid Mechanics: A Short Course for Physicists (Cambridge Univ. Press, Cambridge, 2011).

    Book  Google Scholar 

  20. O. Pokhotelov, J. McKenzie, P. Shukla, and L. Stenflo, Phys. Fluids 7, 1785 (1995).

    Article  ADS  Google Scholar 

  21. L. Ostrovsky, Asymptotic Pertubation Theory of Waves (Imperial College Press, London, 2015), p. 18.

    MATH  Google Scholar 

  22. K. Wiklund, Nonlin. Proc. Geophys. 5, 137 (1998).

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (grant no. 20-1-1-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Yudenkova.

Ethics declarations

The authors declare that there is no conflicts of interests.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudenkova, M.A., Klimachkov, D.A. & Petrosyan, A.S. Poincare Waves and Rossby Waves in Compressible Shallow Water Flows. J. Exp. Theor. Phys. 134, 327–339 (2022). https://doi.org/10.1134/S1063776122020091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122020091

Navigation