Skip to main content
Log in

Averaging of Thermoelectric Media: Thermoelectric Potential Distribution

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider the problem of determining effective thermoelectric characteristics (namely, thermal and electrical conductivity, thermopower, and Q factor) of composite media. We assume that the characteristic size of inclusions is quite large (exceeds 20–30 nm), which makes it possible to disregard charge tunneling and photon scattering at the boundaries of various media. We investigate layered, fibrous, and granular composites. The choice of boundary conditions based on the Prigogine principle is substantiated in detail. By way of example, we analyze the properties of a composite medium consisting of a MgAg0.97Sb1 matrix with cylindrical or spherical SnSe inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. V. Sinyavsky and V. M. Brodyansky, Ferroelectrics 131, 321 (1992).

    Article  Google Scholar 

  2. A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and Its Applications (CRC, Boca Raton (2016).

    Book  Google Scholar 

  3. I. A. Starkov and A. S. Starkov, IEEE Trans. Ultrason. Ferr. 61, 1357 (2014).

    Article  Google Scholar 

  4. A. F. Ioffe, Semiconductor Thermal Elements (Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    Google Scholar 

  5. D. M. Rowe, CRC Handbook of Thermoelectrics (CRC, Boca Raton, 1995).

    Google Scholar 

  6. A. V. Dmitriev and I. P. Zvyagin, Phys. Usp. 53, 789 (2010).

    Article  ADS  Google Scholar 

  7. I. A. Starkov and A. S. Starkov, Int. J. Solids Struct. 100, 187 (2016).

    Article  Google Scholar 

  8. N. Mathur and A. Mischenko, US Patent No. WO2006056809A1 (2006).

  9. U. S. Ghoshal, U.S. Patent No. 6 595 004 (2003).

  10. L. P. Bulat, V. B. Osvenskii, Yu. N. Parkhomenko, and D. A. Pshenai-Severin, Phys. Solid State 54, 2165 (2012).

    Article  ADS  Google Scholar 

  11. A. A. Snarskii, A. K. Sarychev, I. V. Bezsudnov, and A. N. Lagarkov, Semiconductors 46, 659 (2012).

    Article  ADS  Google Scholar 

  12. M. Martin-Gonzalez, O. Caballero-Calero, and P. Diaz-Chao, Renewable Sustainable Energy Rev. 24, 288 (2013).

    Article  Google Scholar 

  13. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature (London, U.K.) 413, 597 (2001).

    Article  ADS  Google Scholar 

  14. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).

  15. L. A. Molotkov, Study of Wave Propagation in Porous and Fractured Media Based on Effective Biot Models and Layered Media (Nauka, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  16. A. S. Starkov and I. A. Starkov, J. Exp. Theor. Phys. 119, 861 (2014).

    Article  ADS  Google Scholar 

  17. I. A. Starkov and A. S. Starkov, Solid State Commun. 226, 5 (2016).

    Article  ADS  Google Scholar 

  18. L. P. Bulat and D. A. Pshenai-Severin, Phys. Solid State 52, 485 (2010).

    Article  ADS  Google Scholar 

  19. L. P. Bulat, I. A. Drabkin, V. V. Karataev, V. B. Osvenskii, and D. A. Pshenai-Severin, Phys. Solid State 52, 1836 (2010).

    Article  ADS  Google Scholar 

  20. G. N. Dul’nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composite Materials: A Reference Book (Energiya, Leningrad, 1974) [in Russian].

    Google Scholar 

  21. B. Ya. Balagurov, Sov. Phys. Semicond. 16, 162 (1982).

    ADS  Google Scholar 

  22. Y. Yang, S. H. Xie, F. Y. Ma, and J. Y. Li, J. Appl. Phys. 111, 013510 (2012).

  23. I. A. Starkov and A. S. Starkov, J. Nanophoton. 10, 033503 (2016).

  24. J. P. Straley, J. Phys. D: Appl. Phys. 14, 2101 (1981).

    Article  ADS  Google Scholar 

  25. D. J. Bergman and O. Levy, J. Appl. Phys. 70, 6821 (1991).

    Article  ADS  Google Scholar 

  26. P. Wang, B. L. Wang, K. F. Wang, H. Hirakata, and C. Zhang, Int. J. Eng. Sci. 142, 158 (2019).

    Article  Google Scholar 

  27. I. A. Starkov and A. S. Starkov, Int. J. Solids Struct. 202, 226 (2020).

    Article  Google Scholar 

  28. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (Courier Corp., New York, 2013).

    MATH  Google Scholar 

  29. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1992; Pergamon, New York, 1984).

  30. I. Prigogine and D. Kondepudi, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, New York, 1998; Mir, Moscow, 2002).

  31. A. I. Anselm, Fundamentals of Statistical Physics and Thermodynamics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  32. V. I. Smirnov, Course of Higher Mathematics (Nauka, Moscow, 1974), Vol. 4 [in Russian].

    Google Scholar 

  33. I. A. Starkov and A. S. Starkov, Int. J. Solids Struct. 160, 32 (2019).

    Article  Google Scholar 

  34. L. P. Bulat, I. A. Drabkin, V. V. Karatayev, V. B. Osvenskii,Y. N. Parkhomenko, D. A. Pshenay-Severin, and A. I. Sorokin, J. Electron. Mater. 43, 2121 (2014).

    Article  ADS  Google Scholar 

  35. Z. Soleimani, S. Zoras, B. Ceranic, S. Shahzad, and Y. Cui, Sustainable Energy Technol. Assessm. 37, 100604 (2020).

  36. Z. Liu, J. Shuai, J. Mao, Y. Wang, Z. Wang, W. Cai, J. Sui, and Z. Ren, Acta Mater. 102, 17 (2016).

    Article  ADS  Google Scholar 

  37. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 8, 4670 (2008).

    Article  ADS  Google Scholar 

  38. X. L. Shi, X. Tao, J. Zou, and Z. G. Chen, Adv. Sci. 7, 1902923 (2020).

  39. V. I. Odelevskii, Zh. Tekh. Fiz. 21, 667 (1951).

    Google Scholar 

  40. Al. I. Hochbaum et al., Nature (London, U.K.) 451, 163 (2008).

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 19-79-10074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Starkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starkov, A.S., Starkov, I.A. Averaging of Thermoelectric Media: Thermoelectric Potential Distribution. J. Exp. Theor. Phys. 134, 211–221 (2022). https://doi.org/10.1134/S1063776122010113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122010113

Navigation