Skip to main content
Log in

Interatomic Interaction at the Aluminum–Fullerene C60 Interface

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a model of interaction between aluminum and carbon atoms at the Al/C60 interface. The binding energy and the fullerene position of the Al(111) substrate are calculated using the density functional theory. The results are used for determining the parameters of the Lennard-Jones potential, which is then used in investigations based on the molecular dynamics method. Theoretical investigation of the fullerene desorption from the aluminum substrate demonstrates good agreement of the results with available experimental data. Capillary effects emerging at the interface between the aluminum melt and fullerenes embedded in it are studied. The positive value of the specific free energy per unit Al/C60 surface indicates poor wettability of molecules by the melt. The calculated value of the diffusion relaxation time turns out to be two orders of magnitude smaller than the characteristic fullerene coagulation time, indicating the existence of repulsive forces between them. The activation nature of the coagulation process and the capillary origin of the interaction between fullerenes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. Chak, H. Chattopadhyay, and T. L. Dora, J. Manuf. Proces. 56, 1059 (2020).

    Article  Google Scholar 

  2. Y. Hu, O. A. Shenderova, Z. Hu, et al., Soft Matter 3, 1099 (2007).

    Article  Google Scholar 

  3. S. R. Bakshi, D. Lahiri, and A. Agarwal, Int. Mater. Rev. 55, 41 (2010).

    Article  Google Scholar 

  4. H. G. P. Kumar and M. A. Xavior, Proc. Eng. 97, 1033 (2014).

    Article  Google Scholar 

  5. F. A. Khalid, O. Beffort, U. E. Klotz, et al., Acta Mater. 51, 4575 (2003).

    Article  ADS  Google Scholar 

  6. A. I. Korobov, A. I. Kokshaiskii, V. M. Prokhorov, et al., Phys. Solid State 58, 2472 (2016).

    Article  ADS  Google Scholar 

  7. J. Shin, K. Choi, S. Shiko, et al., Composites, Part B 77, 194 (2015).

    Article  Google Scholar 

  8. A. J. Maxwell, P. A. Brühwiler, S. Andersson, et al., Phys. Rev. B 52, R5546 (1995).

    Article  ADS  Google Scholar 

  9. A. J. Maxwell, P. A. Brühwiler, D. Arvanitis, et al., Phys. Rev. B 57, 7312 (1998).

    Article  ADS  Google Scholar 

  10. M. K.-J. Johansson, A. J. Maxwell, S. M. Gray, et al., Phys. Rev. B 54, 13472 (1996).

    Article  ADS  Google Scholar 

  11. M. K.-J. Johansson, A. J. Maxwell, S. M. Gray, et al., Surf. Sci. 397, 314 (1998).

    Article  ADS  Google Scholar 

  12. R. Fasel, P. Aebi, R. G. Agostino, et al., Phys. Rev. Lett. 76, 4733 (1996).

    Article  ADS  Google Scholar 

  13. A. V. Hamza, J. Dykes, W. D. Mosley, et al., Surf. Sci. 318, 368 (1994).

    Article  ADS  Google Scholar 

  14. M. Stengel, A. de Vita, and A. Baldereschi, Phys.Rev. Lett. 91, 166101 (2003).

  15. X. Q. Shi, M. A. van Hove, and R. Q. Zhang, Phys. Rev. B 85, 075421 (2012).

  16. D. A. King, Surf. Sci. 47, 384 (1975).

    Article  ADS  Google Scholar 

  17. E. I. Altman and R. J. Colton, Surf. Sci. 295, 13 (1993).

    Article  ADS  Google Scholar 

  18. H.-I. Li, K. Pussi, K. J. Hanna, et al., Phys. Rev. Lett. 103, 056101 (2009).

  19. S. Modesti, J. K. Gimzewski, and R. R. Schlittler, Surf. Sci. 331, 1129 (1995).

    Article  ADS  Google Scholar 

  20. C. J. Villagomez, I. L. Garzon, and L. O. Paz-Borbón, Comput. Mater. Sci. 171, 109208 (2020).

  21. J. Hutter, M. Iannuzzi, F. Schiffmann, et al., Wiley Interdiscipl. Rev.: Comput. Mol. Sci. 4, 15 (2014).

    Google Scholar 

  22. J. van de Vondele, M. Krack, F. Mohamed, et al., Comput. Phys. Commun. 167, 103 (2005).

    Article  ADS  Google Scholar 

  23. G. Lippert, J. Hutter, and M. Parrinello, Theor. Chem. Acc. 103, 124 (1999).

    Article  Google Scholar 

  24. M. F. Peintinger, D. V. Oliveira, and T. Bredow, J. Comput. Chem. 34, 451 (2013).

    Article  Google Scholar 

  25. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  26. R. W. G. Wyckoff, Crystal Structures (Interscience, New York, 1963), Vol. 1.

    MATH  Google Scholar 

  27. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Schöchlin, K. P. Bohnen, and K. M. Ho, Surf. Sci. 324, 113 (1995).

    Article  ADS  Google Scholar 

  29. P. W. M. Jacobs, Yu. F. Zhukovskii, Yu. Mastrikov, et al., Comput. Model. New Technol. 6, 7 (2002).

    Google Scholar 

  30. C. Fiolhais, L. M. Almeida, and C. Henriques, Progr. Surf. Sci. 74, 209 (2003).

    Article  ADS  Google Scholar 

  31. W. R. Tyson and W. A. Miller, Surf. Sci. 62, 267 (1977).

    Article  ADS  Google Scholar 

  32. A. Kiejna, Phys. Rev. B 68, 235405 (2003).

  33. http://lammps.sandia.gov.

  34. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  35. J. Tersoff, Phys. Rev. B 39, 5566 (1989).

    Article  ADS  Google Scholar 

  36. J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).

    Article  ADS  Google Scholar 

  37. H. W. Sheng, M. J. Kramer, A. Cadien, et al., Phys. Rev. B 83, 134118 (2011).

  38. H. Heinz, R. A. Vaia, B. L. Farmer, et al., J. Phys. Chem. C 112, 17281 (2008).

    Article  Google Scholar 

  39. L. S. Smith and L. L. Lee, J. Chem. Phys. 71, 4085 (1979).

    Article  ADS  Google Scholar 

  40. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5 Statistical Physics (Elsevier, New York, 2013).

  41. W. Shinoda, M. Shiga, and M. Mikami, Phys. Rev. B 69, 134103 (2004).

  42. A. P. Thompson, S. J. Plimpton, and W. Mattson, J. Chem. Phys. 131, 154107 (2009).

  43. A. Khabibrakhmanov and P. Sorokin, Carbon 160, 228 (2020).

    Article  Google Scholar 

  44. N. P. Kobelev, R. K. Nikolaev, Ya. M. Soifer, et al., Chem. Phys. Lett. 276, 263 (1997).

    Article  ADS  Google Scholar 

  45. Yu. A. Kvashnina, A. G. Kvashnin, L. A. Chernozatonskii, et al., Carbon 115, 546 (2017).

    Article  Google Scholar 

  46. C. A. Perottoni and J. A. H. da Jornada, Phys. Rev. B 65, 224208 (2002).

  47. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Elsevier, Amsterdam, 1996).

    Google Scholar 

  48. T. Liang, T.-R. Shan, Y.-T. Cheng, et al., Mater. Sci. Eng. R 74, 255 (2013).

    Article  Google Scholar 

  49. T. Liang, Y. K. Shin, Y.-T. Cheng, et al., Ann. Rev. Mater. Res. 43, 109 (2013).

    Article  ADS  Google Scholar 

  50. I. A. Evdokimov, R. R. Khayrullin, R. Kh. Bagramov, et al., Russ. J. Non-Ferr. Met. 62, 132 (2021).

    Google Scholar 

  51. A. V. Aborkin, A. I. Elkin, V. V. Reshetniak, et al., J. Alloys Compd. 872, 159593 (2021).

  52. L. Botto, E. P. Lewandowski, M. Cavallaro, et al., Soft Matter 8, 9957 (2012).

    Article  ADS  Google Scholar 

  53. M. V. Smoluchowski, Z. Phys. Chem. 92, 129 (1918).

    Article  Google Scholar 

  54. B. V. Derjaguin, N. V. Churaev, and V. M. Muller, Surface Forces (Springer, Boston, MA, 1987).

    Book  Google Scholar 

  55. V. V. Reshetniak and A. V. Aborkin, J. Exp. Theor. Phys. 130, 214 (2020).

    Article  ADS  Google Scholar 

  56. Y.-K. Kwon, S. Berber, and D. Tománek, Phys. Rev. Lett. 92, 015901 (2004).

  57. R. Peón-Escalante, C. Villanueva, R. Quintal, et al., Comput. Mater. Sci. 83, 120 (2014).

    Article  Google Scholar 

  58. N. Kaur, S. Gupta, V. K. Jindal, and K. Dharamvir, Carbon 48, 744 (2010).

    Article  Google Scholar 

  59. D. W. Brenner, Phys. Rev. B 42, 9458 (1990).

    Article  ADS  Google Scholar 

  60. R. S. Ruoff and A. L. Ruoff, Appl. Phys. Lett. 59, 1553 (1991).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (contract no. 075-15-2020-785 with the Joint Institute for High temperatures, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Reshetnyak.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshetnyak, V.V., Reshetnyak, O.B., Aborkin, A.V. et al. Interatomic Interaction at the Aluminum–Fullerene C60 Interface. J. Exp. Theor. Phys. 134, 69–84 (2022). https://doi.org/10.1134/S1063776122010101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122010101

Navigation