Skip to main content
Log in

Optomechanical Lasing and Domain Walls Driven by Exciton-Phonon Interactions

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study theoretically interaction of optically-pumped excitons with acoustic waves in planar semiconductor nanostructures in the strongly nonlinear regime. We start with the multimode optomechanical lasing regime for optical pump frequency above the exciton resonance and demonstrate broadband chaotic-like lasing spectra. We also predict formation of propagating optomechanical domain walls driven by optomechanical nonlinearity for the optical pump below the exciton resonance. Stability conditions for the domain walls are examined analytically and are in agreement with direct numerical simulations. Our results apply to nonlinear sound propagation in the arrays of quantum wells or in the plane of Bragg semiconductor microcavities hosting excitonic polaritons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. P. Delsing et al., J. Phys. D: Appl. Phys. 52, 353001 (2019).

  2. D. L. Chafatinos et al., Nat. Commun. 11, 4552 (2020).

    Article  ADS  Google Scholar 

  3. A. S. Kuznetsov, G. Dagvadorj, K. Biermann, M. H. Szymanska, and P. V. Santos, Optica 7, 1673 (2020).

    Article  ADS  Google Scholar 

  4. C. Baker et al., Opt. Express 22, 14072 (2014).

    Article  ADS  Google Scholar 

  5. B. Jusserand, A. N. Poddubny, A. V. Poshakinskiy, A. Fainstein, and A. Lemaitre, Phys. Rev. Lett. 115, 267402 (2015).

  6. A. V. Poshakinskiy, A. N. Poddubny, and A. Fainstein, Phys. Rev. Lett. 117, 224302 (2016).

  7. A. V. Poshakinskiy and A. N. Poddubny, Phys. Rev. Lett. 118, 156801 (2017).

  8. E. S. Vyatkin and A. N. Poddubny, Phys. Rev. B 104, 075447 (2021).

  9. G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, Phys. Rev. Lett. 107, 043603 (2011).

  10. A. Xuereb, C. Genes, and A. Dantan, Phys. Rev. Lett. 109, 223601 (2012).

  11. E. A. Martens, S. Thutupalli, A. Fourriére, and O. Hallatschek, Proc. Natl. Acad. Sci. U. S. A. 110, 10563 (2013).

    Article  ADS  Google Scholar 

  12. M. Bagheri, M. Poot, L. Fan, F. Marquardt, and H. X. Tang, Phys. Rev. Lett. 111, 213902 (2013).

  13. B. J. Eggleton, C. G. Poulton, and R. Pant, Adv. Opt. Photon. 5, 536 (2013).

    Article  Google Scholar 

  14. J.-H. Gan, H. Xiong, L.-G. Si, X.-Y. Lü, and Y. Wu, Opt. Lett. 41, 2676 (2016).

    Article  ADS  Google Scholar 

  15. M. H. Matheny et al., Phys. Rev. Lett. 112, 014101 (2014).

  16. M. Kobecki et al., arXiv: 2106.07019 (2021).

  17. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).

    Article  ADS  Google Scholar 

  18. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science Int., Harrow, UK, 2005).

    Google Scholar 

  19. D. V. Vishnevsky, D. D. Solnyshkov, G. Malpuech, N. A. Gippius, and I. A. Shelykh, Phys. Rev. B 84, 035312 (2011).

  20. N. Bobrovska, M. Matuszewski, T. C. H. Liew, and O. Kyriienko, Phys. Rev. B 95, 085309 (2017).

  21. A. V. Yulin, V. K. Kozin, A. V. Nalitov, and I. A. Shelykh, Phys. Rev. A 100, 043610 (2019).

  22. I. A. Mogunov et al., Phys. Rev. Mater. 4, 125201 (2020).

  23. H. Wu, G. Heinrich, and F. Marquardt, New J. Phys. 15, 123022 (2013).

  24. A. L. Ivanov and L. Keldysh, Sov. Phys. JETP 57, 234 (1982).

    ADS  Google Scholar 

  25. L. Hanke, D. Fröhlich, A. L. Ivanov, P. B. Littlewood, and H. Stolz, Phys. Rev. Lett. 83, 4365 (1999).

    Article  ADS  Google Scholar 

  26. S. Latini et al., Phys. Rev. Lett. 126, 227401 (2021).

Download references

ACKNOWLEDGMENTS

This work has been funded by the Russian Science Foundation, grant no. 20-42-04405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Poddubny.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yulin, A.V., Poshakinskiy, A.V. & Poddubny, A.N. Optomechanical Lasing and Domain Walls Driven by Exciton-Phonon Interactions. J. Exp. Theor. Phys. 134, 171–182 (2022). https://doi.org/10.1134/S1063776122010058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122010058

Navigation