Skip to main content
Log in

Continuous-Time Random Walks under Finite Concentrations

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Nonlinear equations generalizing the continuous-time random walk model to the case of finite concentrations have been derived. The equations take into account two factors responsible for the emergence of anomalous diffusion: nonlinearity and local equilibrium breaking. In locally equilibrium conditions, these equations are reduced to the nonlinear Fokker–Plank equation that can be interpreted as the transport equation for fermions with multiple energy levels. As a consequence of the nonlinear equations, two linear non-Markov equations with concentration-dependent memory functions have been obtained. One of these equations describes diffusion of a small deviation from the equilibrium state, while the other describes diffusion of tagged particles in the equilibrium system. It is shown that the emergence of anomalous diffusion is favored by low concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).

    Article  ADS  Google Scholar 

  2. H. Scher and M. Lax, Phys. Rev. B 7, 4491 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  3. H. Scher and M. Lax, Phys. Rev. B 7, 4502 (1973).

    Article  ADS  Google Scholar 

  4. H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975).

    Article  ADS  Google Scholar 

  5. J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Metzler and J. Klafter, J. Phys. A 37, R61 (2004).

    Article  Google Scholar 

  7. R. Kutner and J. Masoliver, Eur. Phys. J. B 90, 50 (2017).

    Article  ADS  Google Scholar 

  8. I. M. Sokolov, Soft Matter 8, 9043 (2012).

    Article  ADS  Google Scholar 

  9. F. Höfling and T. Franosch, Rep. Prog. Phys. 76, 046602 (2013).

  10. V. Uchaikin and R. Sibatov, Fractional Kinetics in Solids. Anomalous Transport in Semiconductors, Dielectric and Nanosystems (World Scientific, Singapore, 2013).

    Book  Google Scholar 

  11. M. Bologna, C. Tsallis, and P. Grigolini, Phys. Rev. E 62, 2213 (2000).

    Article  ADS  Google Scholar 

  12. D. Schertzer, M. Larcheveque, J. Duan, V. V. Yanovsky, and S. Lovejoy, J. Math. Phys. 42, 200 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  13. C. Tsallis and E. K. Lenzi, Chem. Phys. 284, 341 (2002).

    Article  Google Scholar 

  14. P. Straka and S. Fedotov, J. Theor. Biol. 366, 71 (2015).

    Article  ADS  Google Scholar 

  15. P. Tan, Y. Liang, Q. Xu, E. Mamontov, J. Li, X. Xing, and L. Hong, Phys. Rev. Lett. 120, 248101 (2018).

  16. V. P. Shkilev, Khim. Fiz. 24, 85 (2005).

    Google Scholar 

  17. V. P. Shkilev, J. Exp. Theor. Phys. 105, 1068 (2007).

    Article  ADS  Google Scholar 

  18. V. P. Shkilev, Russ. J. Electrochem. 44, 1212 (2008).

    Article  Google Scholar 

  19. V. P. Shkilev, Russ. J. Phys. Chem. B 27, 302 (2008).

    Article  Google Scholar 

  20. J. Bisquert, Phys. Chem. Chem. Phys. 10, 1 (2008).

    Article  Google Scholar 

  21. V. P. Shkilev, J. Exp. Theor. Phys. 101, 562 (2005).

    Article  ADS  Google Scholar 

  22. G. Kaniadakis, Phys. A (Amsterdam, Neth.) 296, 405 (2001).

  23. G. Kaniadakis and D. T. Hristopulos, Entropy 20, 426 (2018).

    Article  ADS  Google Scholar 

  24. V. P. Zhdanov, Elementary Physical and Chemical Processes on the Surface (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  25. V. Pereyra, G. Zgrablich, and V. P. Zhdanov, Langmuir 6, 691 (1990).

    Article  Google Scholar 

  26. P. H. Chavanis, Eur. Phys. J. B 62, 179 (2008).

    Article  ADS  Google Scholar 

  27. D. V. Sivukhin, General Course of Physics (Nauka, Moscow, 1990), Vol. 2 [in Russian].

    Google Scholar 

  28. C. Tsallis and D. J. Bukman, Phys. Rev. E 54, R2197 (1996).

    Article  ADS  Google Scholar 

  29. A. I. Saichev and S. G. Utkin, J. Exp. Theor. Phys. 99, 443 (2004).

    Article  ADS  Google Scholar 

  30. J. Gajda and M. Magdziarz, Phys. Rev. E 82, 011117 (2010).

  31. T. Miyaguchi and T. Akimoto, Phys. Rev. E 87, 032130 (2013).

  32. B. L. Sprague, R. L. Pego, D. A. Stavreva, and J. G. McNally, Biophys. J. 86, 3473 (2004).

    Article  Google Scholar 

  33. T. Ala-Nissila, R. Ferrando, and S. C. Ying, Adv. Phys. 51, 949 (2002).

    Article  ADS  Google Scholar 

  34. I. Goychuk, Phys. Rev. E 86, 021113 (2012).

  35. M. O. Vlad and J. Ross, Phys. Rev. E 66, 061908 (2002).

  36. A. Yadav and W. Horsthemke, Phys. Rev. E 74, 066118 (2006).

  37. V. P. Shkilev, J. Exp. Theor. Phys. 109, 852 (2009).

    Article  ADS  Google Scholar 

  38. S. B. Yuste, E. Abad, and K. Lindenberg, Phys. Rev. E 82, 061123 (2010).

  39. A. Plastino and A. Plastino, Phys. A (Amsterdam, Neth.) 222, 347 (1995).

  40. T. D. Frank and A. Daffertshofer, Phys. A (Amsterdam, Neth.) 272, 497 (1999).

  41. V. Schwämmle, F. D. Nobre, and E. M. F. Curado, Phys. Rev. E 76, 041123 (2007).

  42. J. S. Andrade, G. F. T. da Silva, A. A. Moreira, F. D. Nobre, and E. M. F. Curado, Phys. Rev. Lett. 105, 260601 (2010).

  43. M. S. Ribeiro, F. D. Nobre, and C. Tsallis, Phys. Rev. E 89, 052135 (2014).

  44. W. Schirmacher, Solid State Commun. 39, 893 (1981).

    Article  ADS  Google Scholar 

  45. B. Movaghar, M. Grünewald, B. Pohlmann, D. Würtz, and W. Schirmacher, J. Stat. Phys. 30, 315 (1983).

    Article  ADS  Google Scholar 

  46. K. Godzik and W. Schirmacher, J. Phys. (Paris) 42, 127 (1981).

    Article  Google Scholar 

  47. V. P. Shkilev, J. Exp. Theor. Phys. 133, 88 (2021).

    Article  Google Scholar 

  48. J. van de Lagemaat, N. Kopidakis, N. R. Neale, and A. J. Frank, Phys. Rev. B 71, 035304 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Shkilev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkilev, V.P. Continuous-Time Random Walks under Finite Concentrations. J. Exp. Theor. Phys. 134, 85–94 (2022). https://doi.org/10.1134/S1063776122010034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122010034

Navigation