Skip to main content
Log in

Elastic and Plastic Deformations of Carbon Nanotubes Multilayer Packing on a Flat Substrate

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown by molecular dynamics method using the chain model that the transverse compression of a multilayer packing of identical parallel single-walled carbon nanotubes on a flat substrate can be elastic only for their diameter D < 2.5 nm. In this case, the removal of compression leads to the return of the packing to the ground uncompressed state. For D > 2.5 nm, a multilayer packing is a multistable system with a large number of stationary states, which are characterized by the portion of collapsed nanotubes (the packing thickness decreases monotonically with increasing fraction of such nanotubes). For nanotubes with a chirality index (60, 0) (D = 4.69 nm), the thickness of 11-layer packing can change from 12 to 36 nm depending on the fraction of collapsed nanotubes. The transverse compression of such a packing leads to plastic deformations. Such a compression transforms the packing from one stationary state to another with a smaller thickness only due to collapse of a part of nanotubes. Simulation of dynamics shows that all stationary states of the packing are stable to thermal vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. L. V. Radushkevich and V. M. Luk’yanovich, Zh. Fiz. Khim. 26, 88 (1952).

    Google Scholar 

  2. S. Iijima, Nature (London, U. K.) 354, 56 (1991).

    Article  ADS  Google Scholar 

  3. S. Iijima, P. M. Ajayan, and T. Ichihashi, Phys. Rev. Lett. 69, 3100–3103 (1992).

  4. A. V. Eletskii, Phys. Usp. 45, 369 (2002).

    Article  ADS  Google Scholar 

  5. D. Qian, G. J. Wagner, W. K. Liu, M.-F. Yu, and R. S. Ruoff, Appl. Mech. Rev. 55, 495 (2002).

    Article  ADS  Google Scholar 

  6. J. Di, S. Fang, F. A. Moura, D. S. Galvao, J. Bykova, A. Aliev, M. J. d. Andrade, X. Lepro, N. Li, C. Haines, R. Ovalle-Robles, D. Qian, and R. H. Baughman, Adv. Mater. 28, 6598 (2016).

    Article  Google Scholar 

  7. Y. Bai, R. Zhang, X. Ye, Z. Zhu, H. Xie, B. Shen, D. Cai, B. Liu, C. Zhang, Z. Jia, S. Zhang, X. Li, and F. Wei, Nat. Nanotechnol. 13, 589 (2018).

    Article  ADS  Google Scholar 

  8. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science (Washington, DC, U. S.) 273, 483 (1996).

    Article  ADS  Google Scholar 

  9. R. R. Schlittler, J. W. Seo, J. K. Gimzewski, C. Durkan, M. S. M. Saifullah, and M. E. Welland, Science (Washington, DC, U. S.) 292, 1136 (2001).

    Article  ADS  Google Scholar 

  10. B. C. Liu, T. J. Lee, S. H. Lee, C. Y. Park, and C. J. Lee, Chem. Phys. Lett. 377, 55 (2003).

    Article  ADS  Google Scholar 

  11. Y. Li, X. Zhang, X. Tao, J. Xu, W. Huang, J. Luo, Z. Luo, T. Li, F. Liu, Y. Bao, and H. J. Geise, Carbon 43, 295 (2005).

    Article  Google Scholar 

  12. J. Tersoff and R. S. Ruoff, Phys. Rev. Lett. 73, 676 (1994).

    Article  ADS  Google Scholar 

  13. E. G. Rakov, Russ. Chem. Rev. 82, 27 (2013).

    Article  ADS  Google Scholar 

  14. N. S. Chopra, L. X. Benedict, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Nature (London, U.K) 377, 135(1995).

    Article  ADS  Google Scholar 

  15. G. Gao, T. Çağin, and W. A. Goddard III, Nanotechnology 9, 184 (1998).

    Article  ADS  Google Scholar 

  16. J. Xiao, B. Liu, Y. Huang, J. Zuo, K.-C. Hwang, and M.-F. Yu, Nanotechnology 18, 395703 (2007).

  17. T. Chang, Phys. Rev. Lett. 101, 175501 (2008).

  18. J. A. Baimova, Q. Fan, L. Zeng, Z. Wang, S. V. Dmitriev, X. Feng, and K. Zhou, J. Nanomater. 2015, 186231 (2015).

  19. A. Impellizzeri, P. Briddon, and C. P. Ewels, Phys. Rev. B 100, 115410 (2019).

  20. M. M. Maslov, K. S. Grishakov, M. A. Gimaldinova, and K. P. Katin, Fullerenes, Nanotubes, Carbon Nanostruct. 28, 97 (2020).

    Article  ADS  Google Scholar 

  21. T. Hertel, R. E. Walkup, and P. Avouris, Phys. Rev. B 58, 13870 (1998).

    Article  ADS  Google Scholar 

  22. J. Xie, Q. Xue, H. Chen, D. Xia, C. Lv, and M. Ma, J. Phys. Chem. C 114, 2100 (2010).

    Article  Google Scholar 

  23. X. Yuan and Y. Wang, Nanotechnology 29, 075705 (2018).

  24. A. Y. Cao, P. L. Dickrell, W. G. Sawyer, M. N. Ghasemi-Nejhad, and P. M. Ajayan, Science (Washington, DC, U. S.) 310, 1307 (2005).

    Article  ADS  Google Scholar 

  25. L. K. Rysaeva, E. A. Korznikova, R. T. Murzaev, D. U. Abdullina, A. A. Kudreyko, J. A. Baimova, D. S. Lisovenko, and S. V. Dmitriev, Facta Univ., Ser. Mech. Eng. 18, 1 (2020).

    Google Scholar 

  26. J. Wang, F. Ma, and M. Sun, RSC Adv. 7, 16801 (2017).

    Article  ADS  Google Scholar 

  27. C. Ling-Xiu, W. Hui-Shan, J. Cheng-Xin, C. Chen, and W. Hao-Min, Acta Phys. Sin. 68, 168102 (2019).

  28. B. K. Wittmaack, A. N. Volkov, and L. V. Zhigilei, Compos. Sci. Technol. 166, 66 (2018).

    Article  Google Scholar 

  29. B. K. Wittmaack, A. N. Volkov, and L. V. Zhigilei, Carbon 143, 587 (2019).

    Article  Google Scholar 

  30. B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76, 2511 (1996).

    Article  ADS  Google Scholar 

  31. E. Saether, S. J. V. Frankland, and R. B. Pipes, Compos. Sci. Technol. 63, 1543 (2003).

    Article  Google Scholar 

  32. H. Raffi-Tabar, E. Ghavanloo, and S. A. Fazelzadeh, Phys. Rep. 638, 1 (2016).

    Article  MathSciNet  ADS  Google Scholar 

  33. V. M. Harik, Solid State Commun. 120, 331 (2001).

    Article  ADS  Google Scholar 

  34. J. Ji, J. Zhao, and W. Guo, J. Mech. Phys. Sol. 128, 79 (2019).

    Article  ADS  Google Scholar 

  35. A. V. Savin, E. A. Korznikova, and S. V. Dmitriev, Phys. Rev. B 92, 035412 (2015).

  36. E. A. Korznikova, L. K. Rysaeva, A. V. Savin, E. G. Soboleva, E. G. Ekomasov, M. A. Ilgamov, and S. V. Dmitriev, Materials 12, 3951 (2019).

    Article  ADS  Google Scholar 

  37. A. Savin, E. Korznikova, S. Dmitriev, and E. Soboleva, Comp. Mater. Sci. 135, 99 (2017).

    Article  Google Scholar 

  38. A. V. Savin and O. I. Savina, Phys. Solid State 61, 2241 (2019).

    Article  ADS  Google Scholar 

  39. A. V. Savin and O. I. Savina, Phys. Solid State 63, 145 (2021).

    Article  ADS  Google Scholar 

  40. A. V. Savin, E. A. Korznikova, and S. V. Dmitriev, Phys. Solid State 57, 2348 (2015).

    Article  ADS  Google Scholar 

  41. A. V. Savin, E. A. Korznikova, and S. V. Dmitriev, Phys. Rev. B 99, 235411 (2019).

  42. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 19-58-45036 IND-a). Computer resources were provided by the Joint Supercomputer Center, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savin, A.V., Savina, O.I. Elastic and Plastic Deformations of Carbon Nanotubes Multilayer Packing on a Flat Substrate. J. Exp. Theor. Phys. 134, 60–68 (2022). https://doi.org/10.1134/S1063776122010022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122010022

Navigation