Skip to main content
Log in

Line Shape of the Sub-Doppler Resonance in Alkali-Metal Atomic Vapors in the Field of Counterpropagating Bichromatic Laser Beams

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

High-contrast sub-Doppler resonances observed in alkali-metal atomic vapors in the field of counterpropagating bichromatic laser beams are perspective in quantum metrology for designing a miniature optical frequency standard. Until now, these nonlinear resonances have been investigated only experimentally or using numerical calculations. In our opinion, the development of a simplified theoretical model of the observed resonances, which would provide explicit compact analytic expressions describing the line shape of the resonance, would be extremely important for further evolution of the theory. In this study, we perform such theoretical analysis based on the three-level Λ scheme of the atom. We investigate two regimes, viz., the regime of a low-intensity standing wave with close intensities of counterpropagating beams (I1I2) and the regime of a probe wave, in which one of the beams has a noticeably lower intensity than that of the oppositely propagating beam (I2I1). The resulting analytic expressions make it possible to determine qualitative differences between these regimes and to separate explicitly the contributions from different nonlinear effects to the light field absorption, including the terms responsible for the formation of a high-contrast sub-Doppler peak. The expressions derived here are in qualitative agreement with experimental data obtained earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. S. Letokhov and V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer, Berlin, 1977).

    Book  Google Scholar 

  2. T. W. Hänsch, S. A. Lee, R. Wallenstein, and C. Wieman, Phys. Rev. Lett. 34, 307 (1975).

    Article  ADS  Google Scholar 

  3. J. L. Hall, C. J. Borde, and K. Uehara, Phys. Rev. Lett. 37, 1339 (1976).

    Article  ADS  Google Scholar 

  4. S. N. Bagaev and V. P. Chebotaev, JETP Lett. 16, 433 (1972).

    ADS  Google Scholar 

  5. M. Takamoto, I. Ushijima, N. Ohmae, et al., Nat. Photon. 14, 411 (2020).

    Article  ADS  Google Scholar 

  6. R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, et al., Phys. Rev. Lett. 113, 210801 (2014).

    Article  ADS  Google Scholar 

  7. S. Haroche and F. Hartmann, Phys. Rev. A 6, 1280 (1972).

    Article  ADS  Google Scholar 

  8. M. A. Gubin, D. A. Tyurikov, A. S. Shelkovnikov, et al., IEEE J. Quant. Electron. 31, 2177 (1995).

    Article  ADS  Google Scholar 

  9. S. N. Bagayev, A. K. Dmitriyev, and P. V. Pokasov, Laser Phys. 7, 989 (1997).

    Google Scholar 

  10. G. Galzerano, C. Svelto, A. Onae, and E. Bava, SPIE Proc. 4269, 224 (2001).

  11. S. M. Ignatovich, M. N. Skvortsov, V. I. Vishnyakov, et al., J. Phys.: Conf. Ser. 793, 012010 (2017).

    Google Scholar 

  12. C. Affolderbach and G. Mileti, Rev. Sci. Instrum. 76, 073108 (2005).

    Article  ADS  Google Scholar 

  13. N. Almat, W. Moreno, M. Pellaton, et al., IEEE Trans. Ultrason. Ferroelectr. 65, 919 (2018).

    Article  Google Scholar 

  14. T. Schuldt, K. Döringshoff, E. V. Kovalchuk, et al., Appl. Opt. 56, 1101 (2017).

    Article  ADS  Google Scholar 

  15. V. Schkolnik, K. Döringshoff, F. B. Gutsch, et al., Eur. Phys. J. Quant. Technol. 4, 9 (2017).

    Google Scholar 

  16. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, Nuovo Cim. B 36, 5 (1976).

    Article  ADS  Google Scholar 

  17. H. Zhang, K. Okada, H. Herdian, et al., IEEE J. Solid State Circ. 54, 3135 (2019).

    Article  ADS  Google Scholar 

  18. R. Vicarini, M. Abdel Hafiz, V. Maurice, et al., IEEE Trans. Ultrason. Ferroelectr. 66, 1962 (2019).

    Article  Google Scholar 

  19. M. N. Skvortsov, S. M. Ignatovich, V. I. Vishnyakov, et al., Quantum. Electron. 50, 576 (2020).

    Article  ADS  Google Scholar 

  20. C. L. Chow, M. Cho, K. Aheieva, et al., in Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, Logan, Utah, USA, Aug. 3–8, 2019, Paper No. SSC19-WKVII-07.

  21. J. W. Conklin, S. Nydam, T. Ritz, et al., in Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, Logan, Utah, USA, Aug. 3–8, 2019, Paper No. SSC19-VI-03.

  22. M. T. Hummon, S. Kang, D. G. Bopp, et al., Optica 5, 443 (2018).

    Article  ADS  Google Scholar 

  23. Z. L. Newman, V. Maurice, T. E. Drake, et al., Optica 6, 680 (2019).

    Article  ADS  Google Scholar 

  24. V. Maurice, Z. Newman, S. Dickerson, et al., Opt. Express 28, 24708 (2020).

    Article  ADS  Google Scholar 

  25. Z. L. Newman, V. Maurice, C. Fredrick, et al., Optics Lett. 46, 4702 (2021).

  26. D. Brazhnikov, M. Petersen, G. Coget, et al., Phys. Rev. A 99, 062508 (2019).

    Article  ADS  Google Scholar 

  27. M. Abdel Hafiz, G. Coget, E. de Clercq, and R. Boudot, Opt. Lett. 41, 2982 (2016).

    Article  ADS  Google Scholar 

  28. D. V. Brazhnikov, S. M. Ignatovich, I. S. Mesenzova, et al., J. Phys.: Conf. Ser. 1859, 012019 (2021).

    Google Scholar 

  29. P. Yun, F. Tricot, C. E. Calosso, et al., Phys. Rev. Appl. 7, 014018 (2017).

    Article  ADS  Google Scholar 

  30. M. Abdel Hafiz, G. Coget, M. Petersen, et al., J. Appl. Phys. 121, 104903 (2017).

    Article  ADS  Google Scholar 

  31. M. Zhao, X. Jiang, R. Fang, et al., Appl. Opt. 60, 5203 (2021).

    Article  ADS  Google Scholar 

  32. M. Abdel Hafiz, D. V. Brazhnikov, G. Coget, et al., New J. Phys. 19, 073028 (2017).

    Article  ADS  Google Scholar 

  33. D. V. Brazhnikov, S. M. Ignatovich, I. S. Mesenzova, et al., Quantum Electron. 50, 1015 (2020).

    Article  ADS  Google Scholar 

  34. S. N. Bagayev, V. P. Chebotayev, and E. A. Titov, Laser Phys. 4, 224 (1994).

    Google Scholar 

  35. E. Arimondo and G. Orriols, Lett. Nuovo Cim. 17, 333 (1976).

    Article  ADS  Google Scholar 

  36. H. R. Gray, R. M. Whitley, and C. R. Stroud, Jr., Opt. Lett. 3, 218 (1978).

    Article  ADS  Google Scholar 

  37. K.-J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).

    Article  ADS  Google Scholar 

  38. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature (London, U.K.) 397, 594 (1999).

    Article  ADS  Google Scholar 

  39. V. G. Arkhipkin and I. V. Timofeev, Phys. Rev. A 64, 053811 (2001).

    Article  ADS  Google Scholar 

  40. V. I. Yudin, M. Yu. Basalaev, D. V. Brazhnikov, and A. V. Taichenachev, Phys. Rev. A 88, 023862 (2013).

    Article  ADS  Google Scholar 

  41. D. V. Brazhnikov, A. V. Taichenachev, and V. I. Yudin, Eur. Phys. J. D 63, 315 (2011).

    Article  ADS  Google Scholar 

  42. S. G. Rautian and A. M. Shalagin, Kinetic Problems of Nonlinear Spectroscopy (North-Holland, Amsterdam, 1991).

    Google Scholar 

  43. E. Arimondo, Progr. Opt. 35, 257 (1996).

    Article  ADS  Google Scholar 

  44. D. B. Lazebnyi, D. V. Brazhnikov, A. V. Taichenachev, M. Yu. Basalaev, and V. I. Yudin, J. Exp. Theor. Phys. 121, 934 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

The work of A.M. Mikhailov and D.V. Brazhnikov was supported by the Russian Science Foundation (grant no. 17-72-20089) and the Russian Foundation for Basic Research (grant no. 20-02-00075). R. Boudot is grateful to Agence Nationale de la Recherche for support under project LabeX FIRST-TF (ANR grant no. 10-LABX-0048)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Brazhnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, A.M., Boudot, R. & Brazhnikov, D.V. Line Shape of the Sub-Doppler Resonance in Alkali-Metal Atomic Vapors in the Field of Counterpropagating Bichromatic Laser Beams. J. Exp. Theor. Phys. 133, 696–710 (2021). https://doi.org/10.1134/S106377612112013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612112013X

Navigation