Skip to main content
Log in

Schemes and Parameters of the Resonance Two-Photon Excitation of Vibrational States 2ν3 in UF6 Molecules by Bichromatic IR Laser Radiation

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on spectroscopic data for the overtone states of the ν3 vibration in UF6 molecules and lasing frequency of CF4- and para-H2-lasers, which emit near 16 μm, the possibility of resonance two-photon isotope-selective excitation of 2ν3 vibrational states in UF6 molecules by bichromatic IR radiation from these lasers has been analyzed. Schemes and parameters for the excitation of 238UF6 and 235UF6 molecules in the 2ν3 state by two lasers with lasing frequencies detuned by 3.5–13.0 cm–1 from the Q branches in the linear absorption spectra of UF6 molecules in a gasdynamically cooled molecular flow are suggested. At the same time, the sum of these frequencies (νL1 + νL2) is equal to the frequency of the 0ν3 → 2ν3 vibrational transition in UF6 molecules. If both lasers act on molecules simultaneously, there appears the possibility of their selective excitation from the ground vibrational state 0ν3 to excited states 2ν3. The isotope-selective excitation of overtone vibrational states 2ν3 in 238UF6 and 235UF6 molecules using the method suggested here may form a basis for low-energy laser separation of uranium isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. G. N. Makarov, Phys. Usp. 58, 670 (2015).

    ADS  Google Scholar 

  2. G. N. Makarov, Phys. Usp. 65 (2022, in press) https://doi.org/10.3367/UFNe.2021.02.038942 .

  3. V. Yu. Baranov, E. I. Kozlova, Yu. A. Kolesnikov, and A. A. Kotov, in Isotopes: Properties, Production, Application, Ed. by V. Yu. Baranov (Fizmatlit, Moscow, 2005), Vol. 1, p. 474 [in Russian].

    Google Scholar 

  4. W. D. Metz, Science (Washington, DC, U. S.) 185, 602 (1974).

    ADS  Google Scholar 

  5. A. J. Glass, UCRL-50021-75, 1-55 (1975).

  6. N. Camarcat, A. Lafon, J.-P. Perves, et al., in Laser Isotope Separation, Proc. SPIE 1859 (1993). https://doi.org/10.1117/12.145494

  7. W. Fuss, Report MPQ 346 (Max-Planck-Inst. Quantenoptik, 2015).

    Google Scholar 

  8. Atomic Energy 2.0. https://www.atomic-energy.ru/keywords/vou-nou.

  9. World Nuclear News. https://www.world-nuclear-news.org/ENF-Megatons-to-Megawatts-program-concludes-1112134.html. Accessed December 11, 2013

  10. J. Kim, J. W. Eerkens, and W. H. Miller, Nucl. Sci. Eng. 156, 219 (2007).

    Google Scholar 

  11. J. W. Eerkens and J. Kim, AIChE J. 56, 2331 (2010).

    Google Scholar 

  12. P. Mathi, V. Parthasarathy, A. K. Nayak, et al., Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci., 1 (2015). https://doi.org/10.1007/s40010-015-0249-6

  13. E. Ronander, H. J. Strydom, and R. L. Botha, Pramana-J. Phys. 82, 49 (2014).

    Google Scholar 

  14. C. D. Ferguson and J. Boureston, https://www.iranwatch.org/sites/default/files/perspex-fwi-Laser.pdf.

  15. Y. Li, Y. Zhang, Y. Kuang et al., Opt. Commun. 283, 2575 (2010).

    ADS  Google Scholar 

  16. V. M. Apatin, V. N. Lokhman, G. N. Makarov, N.‑D. D. Ogurok, and E. A. Ryabov, J. Exp. Theor. Phys. 125, 531 (2017).

    ADS  Google Scholar 

  17. V. M. Apatin, V. N. Lokhman, G. N. Makarov, et al., Quantum Electron. 48, 157 (2018).

    ADS  Google Scholar 

  18. V. M. Apatin, G. N Makarov, N.-D. D. Ogurok, A. N. Petin, and E. A. Ryabov, J. Exp. Theor. Phys. 127, 244 (2018).

    ADS  Google Scholar 

  19. V. N. Lokhman, G. N. Makarov, A. L. Malinovskii, A. N. Petin, D. G. Poydashev, and E. A. Ryabov, Laser Phys. 28, 105703 (2018).

    ADS  Google Scholar 

  20. A. N. Petin and G. N. Makarov, Quantum Electron. 49, 593 (2019).

    ADS  Google Scholar 

  21. V. N. Lokhman, G. N. Makarov, A. N. Petin, D. G. Poydashev, and E. A. Ryabov, J. Exp. Theor. Phys. 128, 188 (2019).

    ADS  Google Scholar 

  22. G. N. Makarov, Phys. Usp. 63, 245 (2020).

    ADS  Google Scholar 

  23. G. N. Makarov and A. N. Petin, J. Exp. Theor. Phys. 92, 1 (2001).

    ADS  Google Scholar 

  24. G. N. Makarov and A. N. Petin, Chem. Phys. 266, 125 (2001).

    Google Scholar 

  25. G. N. Makarov and A. N. Petin, JETP Lett. 111, 325 (2020).

    ADS  Google Scholar 

  26. G. N. Makarov and A. N. Petin, J. Exp. Theor. Phys. 132, 233 (2021).

    ADS  Google Scholar 

  27. http://www.silex.com.au.

  28. SILEX Process. www.chemeurope.com/en/encyclopedia/Silex_Process.html.

  29. SILEX Uranium Enrichment, SILEX Annual Report 2020. http://www.silex.com.au.

  30. J. L. Lyman, Report LA-UR-05-3786 (Los Alamos Natl. Labor., 2005).

  31. J. J. Tiee and C. Wittig, Appl. Phys. Lett. 30, 420 (1977).

    ADS  Google Scholar 

  32. J. J. Tiee, T. A. Fischer, and C. Wittig, Rev. Sci. Instrum. 50, 958 (1979).

    ADS  Google Scholar 

  33. R. L. Byer, IEEE J. Quant. Electron. 12, 732 (1976).

    ADS  Google Scholar 

  34. R. S. McDowell, C. W. Patterson, C. R. Jones, et al., Opt. Lett. 4, 274 (1979).

    ADS  Google Scholar 

  35. C. W. Patterson, R. S. McDowell, and N. G. Nereson, IEEE J. Quant. Electron. 16, 1164 (1980).

    ADS  Google Scholar 

  36. S. S. Alimpiev, G. S Baronov, N. V. Karlov, et al., Sov. J. Quantum Electron. 9, 329 (1979).

    ADS  Google Scholar 

  37. A. Z. Grasyuk, V. S. Letokhov, and V. V. Lobko, Sov. J. Quantum Electron. 10, 1317 (1980).

    ADS  Google Scholar 

  38. J. P. Aldridge, E. G. Brock, H. Filip, et al., J. Chem. Phys. 83, 34 (1985).

    ADS  Google Scholar 

  39. M. Takami, T. Oyama, T. Watanabe, et al., Jpn. J. Appl. Phys. 23, L88 (1984).

    Google Scholar 

  40. S. S. Alimpiev, N. V. Karlov, Sh. Sh. Nabiev, et al., Sov. J. Quantum Electron. 11, 375 (1981).

    ADS  Google Scholar 

  41. K. Takeuchi, H. Tashiro, S. Kato, et al., J. Nucl. Sci. Technol. 26, 301 (1989).

    Google Scholar 

  42. Y. Okada, S. Kato, K. Sunouchi, et al., Appl. Phys. B 62, 77 (1996).

    ADS  Google Scholar 

  43. G. A. Laguna, K. C. Kim, C. W. Patterson, et al., Chem. Phys. Lett. 75, 357 (1980).

    ADS  Google Scholar 

  44. B. J. Krohn, R. S. McDowell, C. W. Patterson, et al., J. Mol. Spectrosc. 132, 285 (1988).

    ADS  Google Scholar 

  45. J. W. Eerkens, R. P. Griot, J. H. Hardin, and R. G. Smith, in Proceedings of the Conference on Lasers and Electro-Optics, OSA Technical Digest (Opt. Soc. Am., 1986);

  46. https://www.osapublishing.org/abstract.cfm?URI=CLEO-1986-TUI4.

  47. Xu Bao-yu, Liu Yong, Dong Wen-bo, et al., Int. Nucl. Inform. Syst. 21 (20) (1990); https://inis.iaea.org/search/search.aspx?orig_q=RN:21077879.

  48. O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, et al., Opt. Commun. 345, 163 (2015).

    ADS  Google Scholar 

  49. I. Y. Baranov and A. V. Koptev, Proc. SPIE 7915, 7915F (2011). https://doi.org/10.1117/12871578

    Article  ADS  Google Scholar 

  50. G. N. Makarov, Quantum Electron. 51, 643 (2021).

    ADS  Google Scholar 

  51. V. S. Letokhov and V. P. Chebotaev, Principles on Nonlinear Laser Spectroscopy (Nauka, Moscow, 1975), p. 107 [in Russian].

    Google Scholar 

  52. S. S. Alimpiev, S. M. Nikiforov, B. G. Sartakov, et al., Sov. J. Quantum Electron. 15, 289 (1985).

    ADS  Google Scholar 

  53. V. M. Apatin, V. N. Lokhman, and G. N. Makarov, Laser Chem. 5, 231 (1985).

    Google Scholar 

  54. C. W. Patterson, B. J. Krohn, and A. S. Pine, Opt. Lett. 6, 39 (1981).

    ADS  Google Scholar 

  55. R. J. Jensen, O. P. Judd, and J. A. Sullivan, Los Alamos Sci., No. 4, 2 (1982).

  56. R. J. Jensen, J. A. Sullivan, and F. T. Finch, Sep. Sci. Technol. 15, 509 (1980).

    Google Scholar 

  57. V. M. Apatin, V. N. Lokhman, and G. N. Makarov, Opt. Spectrosc. 63, 452 (1987).

    ADS  Google Scholar 

  58. V. N. Bagratashvili, V. S. Letokhov, A. A. Makarov, and E. A. Ryabov, Multiple Photon Infrared Laser Photophysics and Photochemistry (Harwood Academic, Chur, 1985).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks A.N. Petin for assistance in working with graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Makarov.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, G.N. Schemes and Parameters of the Resonance Two-Photon Excitation of Vibrational States 2ν3 in UF6 Molecules by Bichromatic IR Laser Radiation. J. Exp. Theor. Phys. 133, 669–674 (2021). https://doi.org/10.1134/S1063776121120116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121120116

Navigation