Skip to main content
Log in

Structure, Electronic Properties, and Stability of Carbon Double Layers Composed of Atoms in the sp3-Hybridized State

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The structure and properties of layered polymorphic types of diamond, so-called binary diamond-like layers (DLs), have been simulated by quantum-mechanical methods. These diamond-like layers consist of completely polymerized bilayer graphenes L6, L4–8, L3–12, L4–6–12, and L5–7. Calculations based on a method of the density functional theory demonstrate that diamond-like DLs can be prepared by subjecting initial bilayer graphenes to strong uniaxial compression normally to the axis of these layers in the pressure range 8.6–51.4 GPa. If graphene layers consisting of topological defects are used as precursors, the phase transition pressure drops several-fold compared with normal graphene L6. The L4–6–12 DL has a minimal layer density (0.98 mg/m2) and maximal pore diameter (4.56 Å). Unlike graphene and diamond, all DLs are expected to be semiconductors with a direct band gap of 1.36–2.38 eV. It has been found by means of molecular dynamics simulation that DLs DL6, DL4–8, DL4–6–12, and DL5–7 under normal pressure can be stable at 300 K, where the DL3–12 is expected to be unstable above 260 K. The most stable diamond-like DL, DL6, and a 3D phase on its basis are expected to offer a high mechanical performance. In synthesized carbon materials, this DL can be uniquely identified from a theoretical Raman spectrum and an X-ray absorption spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 55, 1754 (2013).

    Article  ADS  Google Scholar 

  2. S. K. Tiwari, V. Kumar, A. Huczko, R. Oraon, A. de Adhikari, and G. C. Nayak, Crit. Rev. Solid State Mater. Sci. 41, 1 (2016).

    Article  Google Scholar 

  3. L. Liu and J. Zhao, in Syntheses and Applications of Carbon Nanotubes and Their Composites, Ed. by S. Suzuki (Intech Open Science, London, 2013), Chap. 12, p. 257.

    Google Scholar 

  4. A. A. Chibrova, A. A. Shuvalov, Yu. S. Skibina, V. A. Kokhiya, M. I. Os’makov, and A. O. Shevchenko, Nanotechnol. Russ. 11, 791 (2016).

    Article  Google Scholar 

  5. E. A. Rohlfing, D. M. Cox, and A. Kaldor, J. Chem. Phys. 81, 3322 (1984).

    Article  ADS  Google Scholar 

  6. E. A. Belenkov and F. K. Shabiev, Crystallogr. Rep. 52, 343 (2007).

    Article  ADS  Google Scholar 

  7. X. Zhao, Y. Ando, Yi Liu, M. Jinno, and T. Suzuki, Phys. Rev. Lett. 90, 187401 (2003).

    Article  ADS  Google Scholar 

  8. K. Sharma and N. Costa, Phys. Rev. Lett. 125, 105501 (2020).

    Article  ADS  Google Scholar 

  9. E. A. Belenkov, A. L. Ivanovskii, S. N. Ul’yanov, and F. K. Shabiev, Zh. Strukt. Khim. 46, 1001 (2005).

    Google Scholar 

  10. E. A. Belenkov and I. V. Shakhova, Phys. Solid State 53, 2385 (2011).

    Article  ADS  Google Scholar 

  11. L. Li, W. Qiao, H. Bai, and Y. Huang, RSC Adv. 10, 16709 (2020).

  12. H. S. Domingos, J. Phys.: Condens. Matter 16, 9083 (2004).

    ADS  Google Scholar 

  13. J. J. Quijano-Briones, H. N. Fernandez-Escamilla, and A. Tlahuice-Flores, Comput. Theor. Chem. 70, 1108 (2017).

    Google Scholar 

  14. G. Li, Y. Li, H. Liu, Y. Guo, Y. Lia, and D. Zhu, Chem. Commun. 46, 3256 (2010).

    Article  Google Scholar 

  15. E. A. Belenkov, V. V. Mavrinskii, T. E. Belenkova, and V. M. Chernov, J. Exp. Theor. Phys. 120, 820 (2015).

    Article  ADS  Google Scholar 

  16. S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Proc. Natl. Acad. Sci. U. S. A. 112, 2372 (2015).

    Article  ADS  Google Scholar 

  17. B. Ram and H. Mizuseki, Carbon 137, 266 (2018).

    Article  Google Scholar 

  18. V. A. Davydov, L. S. Kashevarova, A. V. Rakhmanina, V. M. Senyavin, O. P. Pronina, N. N. Oleinikov, V. N. Agafonov, and A. Szwarc, JETP Lett. 72, 557 (2000).

    Article  ADS  Google Scholar 

  19. Y. Jing and N. R. Aluru, Phys. B (Amsterdam, Neth.) 520, 82 (2017).

  20. X. D.Wen, L. Hand, V. Labet, T. Yang, R. Hoffmann, N. W. Ashcroft, A. R. Oganov, and A. O. Lyakhov, Proc. Natl. Acad. Sci. U. S. A. 108, 6833 (2011).

    Article  ADS  Google Scholar 

  21. K. A. Krylova, J. A. Baimova, R. T. Murzaev, and R. R. Mulyukov, Phys. Lett. A 383, 1583 (2019).

    Article  ADS  Google Scholar 

  22. J. R. Morse, D. A. Zugell, E. Patterson, J. W. Baldwin, and H. D. Willauer, J. Power Sources 494, 229734 (2021).

    Article  Google Scholar 

  23. R. A. Brazhe and V. S. Nefedov, Phys. Solid State 56, 626 (2014).

    Article  ADS  Google Scholar 

  24. M. M. Maslov, K. S. Grishakov, M. A. Gimaldinova, and K. P. Katin, Fulleren. Nanotubes Carbon Nanostruct. 28, 97 (2019).

    Article  ADS  Google Scholar 

  25. V. A. Greshnyakov and E. A. Belenkov, J. Struct. Chem. 61, 835 (2020).

    Article  Google Scholar 

  26. E. A. Belenkov and A. E. Kochengin, Phys. Solid State 57, 2126 (2015).

    Article  ADS  Google Scholar 

  27. R. I. Babicheva, S. V. Dmitriev, E. A. Korznikova, and K. Zhou, J. Exp. Theor. Phys. 129, 66 (2019).

    Article  ADS  Google Scholar 

  28. V. H. Crespi, L. X. Benedict, M. L. Cohen, and S. G. Louie, Phys. Rev. B 53, R13303 (1996).

    Article  ADS  Google Scholar 

  29. E. A. Belenkov and V. A. Greshnyakov, J. Exp. Theor. Phys. 119, 101 (2014).

    Article  ADS  Google Scholar 

  30. J. J. P. Stewart, J. Mol. Model. 19, 1 (2013).

    Article  Google Scholar 

  31. International Tables for Crystallography (2006), Vol. E, Chap. 4.1, p. 219.

  32. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. dal Corso, S. de Gironcoli, P. Delugas, et al., J. Phys.: Condens. Matter 29, 465901 (2017).

    Google Scholar 

  33. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  34. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  ADS  Google Scholar 

  35. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  36. V. A. Greshnyakov and E. A. Belenkov, J. Exp. Theor. Phys. 124, 265 (2017).

    Article  ADS  Google Scholar 

  37. M. Lazzeri and F. Mauri, Phys. Rev. Lett. 90, 036401 (2003).

    Article  ADS  Google Scholar 

  38. O. Bunau and M. Calandra, Phys. Rev. B 87, 205105 (2013).

    Article  ADS  Google Scholar 

  39. V. A. Greshnyakov and E. A. Belenkov, Russ. Phys. J. 57, 731 (2014).

    Article  Google Scholar 

  40. W. L. Mao, Ho-K. Mao, P. J. Eng, T. P. Trainor, M. Newville, C.-C. Kao, D. L. Heinz, J. Shu, Y. Meng, and R. J. Hemley, Science (Washington, DC, U. S.) 302, 425 (2003).

    Article  Google Scholar 

  41. V. F. Britun, A. V. Kurdyumov, and I. A. Petrusha, Powder Metall. Met. Ceram. 43, 87 (2004).

    Article  Google Scholar 

  42. V. D. Blank and B. A. Kulnitskiy, Int. J. Nanotechnol. 13, 640 (2016).

    Article  Google Scholar 

  43. H. O. Pierson, Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing and Applications (Noyes, Park Ridge, 1993).

    Google Scholar 

  44. A. R. Oganov, R. J. Hemley, R. M. Hazen, and A. P. Jones, Rev. Mineral. Geochem. 75, 47 (2013).

    Article  Google Scholar 

  45. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 60, 1294 (2018).

    Article  ADS  Google Scholar 

  46. V. A. Greshnyakov, E. A. Belenkov, and M. M. Brzhezinskaya, Phys. Status Solidi B 256, 1800575 (2019).

    Article  ADS  Google Scholar 

  47. C. Kittel, Introduction to Solid States Physics (Wiley, New York, 1996).

    MATH  Google Scholar 

  48. G. Cao, Polymers 6, 2404 (2014).

    Article  Google Scholar 

  49. A. Politano and G. Chiarello, Nano Res. 8, 1847 (2015).

    Article  Google Scholar 

  50. F. Liu, P. M. Ming, and J. Li, Phys. Rev. B 76, 064120 (2007).

    Article  ADS  Google Scholar 

  51. F. Occelli, P. Loubeyre, and R. Letoullec, Nat. Mater. 2, 151 (2003).

    Article  ADS  Google Scholar 

  52. K. Kunc, M. Balkanski, and M. A. Nusimovici, Phys. Status Solidi B 72, 229 (1975).

    Article  ADS  Google Scholar 

  53. H. Kuzmany, R. Pfeiffer, M. Hulman, and C. Kramberger, Philos. Trans. A 362, 2375 (2004).

    Article  ADS  Google Scholar 

  54. A. Jorio and R. Saito, J. Appl. Phys. 129, 021102 (2021).

    Article  ADS  Google Scholar 

  55. E. M. Baitinger, E. A. Belenkov, M. M. Brzhezinskaya, and V. A. Greshnyakov, Phys. Solid State 54, 1715 (2012).

    Article  ADS  Google Scholar 

  56. M. Brzhezinskaya, E. A. Belenkov, V. A. Greshnyakov, G. E. Yalovega, and I. O. Bashkin, J. Alloys Compd. 792, 713 (2019).

    Article  Google Scholar 

  57. P. J. Pauzauskie, J. C. Crowhurst, M. A. Worsley, T. A. Laurence, A. L. D. Kilcoyne, Y. Wang, T. M. Willey, K. S. Visbeck, S. C. Fakra, W. J. Evans, J. M. Zaug, and J. H. Satcher, Jr., Proc. Natl. Acad. Sci. U. S. A. 108, 8550 (2011).

    Article  ADS  Google Scholar 

  58. M. Taillefumier, D. Cabaret, A.-M. Flank, and F. Mauri, Phys. Rev. B 66, 195107 (2002).

    Article  ADS  Google Scholar 

  59. Y. Gao, T. Cao, F. Cellini, C. Berger, W. A. de Heer, E. Tosatti, E. Riedo, and A. Bongiorno, Nat. Nanotechnol. 13, 133 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research and Chelyabinsk Oblast Administration (project no. 20-43-740015).

V. A. G. thanks the Foundation for Support of Yong Scientists of Chelyabinsk State University for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Belenkov.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greshnyakov, V.A., Belenkov, E.A. Structure, Electronic Properties, and Stability of Carbon Double Layers Composed of Atoms in the sp3-Hybridized State. J. Exp. Theor. Phys. 133, 744–753 (2021). https://doi.org/10.1134/S1063776121120086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121120086

Navigation