Skip to main content
Log in

Effective Friction and Mobility of Graphene Nanoparticles (Nanoribbons and Nanotubes) on a Flat Multilayer h-BN Substrate

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown by the molecular dynamics method using the two-dimensional chain model that the motion of graphene nanoparticles (nanoribbons and nanotubes) on a flat thermalized multilayer h-BN substrate is described as the motion of particles in a viscous medium with a constant friction coefficient. The effective friction that occurs during movement has a wave nature, the reason of braking is the interaction of the nanoparticle with thermal bending vibrations of the substrate sheets. The friction coefficient increases monotonically with temperature and decreases upon an increase in the nanoparticle size. The friction emerging for nanoribbons can be divided into two types: internal friction and edge friction (the friction of the inner surface of a nanoribbon and the friction of its edges with the substrate surface). Edge friction plays the major role for lengths L < 35 nm, while internal friction is more important for L > 35 nm. Under the action of a constant longitudinal force, the nanoparticle dynamics is always characterized by the regime of motion at a constant velocity, the value of which is directly proportional to the force and inversely proportional to the friction coefficient. The simulation of the motion of a nanoribbon in the presence of a normal load (pressure) shows that an increase in the load reduces the internal friction due to a decrease in the amplitude of thermal bending vibrations of the substrate layers under the nanoribbon and enhances the edge friction due to pressing of nanoribbon edges into the substrate. For this reason, the effect of reduction of friction upon an increase of the normal load can be observed only for quite long nanoribbons (L > 250 nm), when the internal friction plays the major role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V.Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306 (5696), 666 (2004).

    Article  ADS  Google Scholar 

  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  3. E. Koren, I. Leven, E. Lörtscher, A. Knoll, O. Hod, and U. Duerig, Nat. Nanotechnol. 11, 752 (2016).

    Article  ADS  Google Scholar 

  4. J. C. Meyer, A. K. Geim, M. Katsnelson, K. Novoselov, T. Booth, and S. Roth, Nature (London, U.K.) 446, 60 (2007).

    Article  ADS  Google Scholar 

  5. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science (Washington, DC, U. S.) 321, 385 (2008).

    Article  ADS  Google Scholar 

  6. A. Falin, Q. Cai, E. J. G. Santos, D. Scullion, D. Qian, R. Zhang, Z. Yang, S. Huang, K. Watanabe, T. Taniguchi, M. R. Barnett, Y. Chen, R. S. Ruoff, and L. H. Li, Nat. Commun. 8, 15815 (2017).

    Article  ADS  Google Scholar 

  7. E. Han, J. Yu, E. Annevelink, J. Son, D. A. Kang, K. Watanabe, T. Taniguchi, E. Ertekin, P. Y. Huang, and A. M. van der Zande, Nat. Mater. 19, 305 (2020).

    Article  ADS  Google Scholar 

  8. P. E. Sheehan and C. M. Lieber, Science (Washington, DC, U. S.) 272, 1158 (1996).

    Article  ADS  Google Scholar 

  9. M. Dienwiebel, G. S. Verhoeven, N. Pradeep, J. W. Frenken, J. A. Heimberg, and H. W. Zandbergen, Phys. Rev. Lett. 92, 126101 (2004).

    Article  ADS  Google Scholar 

  10. C. Lee, Q. Li, W. Kalb, X.-Z. Liu, H. Berger, R. W. Carpick, and J. Hone, Science (Washington, DC, U. S.) 328, 76 (2010).

    Article  ADS  Google Scholar 

  11. S. Cahangirov, C. Ataca, M. Topsakal, H. Sahin, and S. Ciraci, Phys. Rev. Lett. 108, 126103 (2012).

    Article  ADS  Google Scholar 

  12. Z. Liu, J. Yang, F. Grey, J. Z. Liu, Y. Liu, Y. Wang, Y. Yang, Y. Cheng, and Q. Zheng, Phys. Rev. Lett. 108, 205503 (2012).

    Article  ADS  Google Scholar 

  13. J. Yang, Z. Liu, F. Grey, Z. Xu, X. Li, Y. Liu, M. Urbakh, Y. Cheng, and Q. Zheng, Phys. Rev. Lett. 110, 255504 (2013).

    Article  ADS  Google Scholar 

  14. E. Koren, E. Lörtscher, C. Rawlings, A. W. Knoll, and U. Duerig, Science (Washington, DC, U. S.) 348, 679 (2015).

    Article  ADS  Google Scholar 

  15. I. Leven, D. Krepel, O. Shemesh, and O. Hod, J. Phys. Chem. Lett. 4, 115 (2013).

    Article  Google Scholar 

  16. A. Geim and I. Grigorieva, Nature (London, U.K.) 499, 419 (2013).

    Article  Google Scholar 

  17. K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, Science (Washington, DC, U. S.) 353 (6298), 461 (2016).

    Article  Google Scholar 

  18. C. R. Woods, L. Britnell, A. Eckmann, R. S. Ma, J. C. Lu, H. M. Guo, X. Lin, G. L. Yu, Y. Cao, R. V. Gorbachev, A. V. Kretinin, J. Park, L. A. Ponomarenko, M. I. Katsnelson, Y. N. Gornostyrev, et al., Nat. Phys. 10, 451 (2014).

    Article  Google Scholar 

  19. G. J. Slotman, M. M. van Wijk, P. L. Zhao, A. Fasolino, M. I. Katsnelson, and S. Yuan, Phys. Rev. Lett. 115, 186801 (2015).

    Article  ADS  Google Scholar 

  20. D. Mandelli, I. Leven, O. Hod, and M. Urbakh, Sci. Rep. 7, 10851 (2017).

    Article  ADS  Google Scholar 

  21. J. A. Williams and H. R. Le, J. Phys. D: Appl. Phys. 39, R201 (2006).

    Article  ADS  Google Scholar 

  22. K. Shinjo and M. Hirano, Surf. Sci. 283, 473 (1993).

    Article  ADS  Google Scholar 

  23. O. Hod, E. Meyer, Q. Zheng, and M. Urbakh, Nature (London, U.K.) 563, 485 (2018).

    Article  ADS  Google Scholar 

  24. J. M. Martin and A. Erdemir, Phys. Today 71 (4), 40 (2018).

    Article  Google Scholar 

  25. M. Z. Baykara, M. R. Vazirisereshk, and A. Martini, Appl. Phys. Rev. 5, 041102 (2018).

    Article  ADS  Google Scholar 

  26. D. Berman, A. Erdemir, and A. V. Sumant, ACS Nano 12, 2122 (2018).

    Article  Google Scholar 

  27. Y. Song, D. Mandelli, O. Hod, M. Urbakh, M. Ma, and Q. Zheng, Nat. Mater. 17, 894 (2018).

    Article  ADS  Google Scholar 

  28. W. Ouyang, D. Mandelli, M. Urbakh, and O. Hod, Nano Lett. 18, 6009 (2018).

    Article  ADS  Google Scholar 

  29. A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, and E. Tosatti, Rev. Mod. Phys. 85, 529 (2013).

    Article  ADS  Google Scholar 

  30. D. Mandelli, W. Ouyang, O. Hod, and M. Urbakh, Phys. Rev. Lett. 122, 076102 (2019).

    Article  ADS  Google Scholar 

  31. A. V. Savin, E. A. Korznikova, and S. V. Dmitriev, Phys. Rev. B 92, 035412 (2015).

    Article  ADS  Google Scholar 

  32. A. V. Savin, E. A. Korznikova, and S. V. Dmitriev, Phys. Solid State 57, 2348 (2015).

    Article  ADS  Google Scholar 

  33. A. V. Savin, E. A. Korznikova, and S. V. Dmitriev, Phys. Rev. B 99, 235411 (2019).

    Article  ADS  Google Scholar 

  34. J. H. Los, J. M. H. Kroes, K. Albe, R. M. Gordillo, M. I. Katsnelson, and A. Fasolino, Phys. Rev. B 96, 184108 (2017).

    Article  ADS  Google Scholar 

  35. A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).

    Article  Google Scholar 

  36. S.-W. Liu, H.-P. Wang, Q. Xu, T.-B. Ma, G. Yu, C. Zhang, D. Geng, Z. Yu, S. Zhang, W. Wang, Y.‑Z. Hu, H. Wang, and J. Luo, Nat. Commun. 8, 14029 (2017).

    Article  ADS  Google Scholar 

  37. Y. Liu, A. Song, Z. Xu, R. Zong, J. Zhang, W. Yang, R. Wang, Y. Hu, J. Luo, and T. Ma, ACS Nano 12, 7638 (2018).

    Article  Google Scholar 

Download references

Funding

The research work was subsided by the Federal Research Center of Chemical Physics, Russian Academy of Sciences, under State assignment (subject 0082-2019-0005). Computer resources were offered by the Interdepartmental Supercomputer Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savin.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savin, A.V. Effective Friction and Mobility of Graphene Nanoparticles (Nanoribbons and Nanotubes) on a Flat Multilayer h-BN Substrate. J. Exp. Theor. Phys. 133, 754–765 (2021). https://doi.org/10.1134/S1063776121120074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121120074

Navigation