Skip to main content
Log in

Nonlinear Planar Hall Effect in Chiral Topological Semimetal CoSi

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

For a chiral topological semimetal CoSi we experimentally investigate second-harmonic transverse voltage response to ac electrical current for two (normal and in-plane) orientations of magnetic field. Without magnetic field, the observed response depends quadratically on the longitudinal current, as it should be expected for nonlinear Hall effect in topological semimetals. In the external magnetic field, the second-harmonic Hall voltage shows odd-type dependence on the field direction for both field orientations. In normal field, this sensitivity to the field direction allows to exclude possible contribution of the thermopower effects, so the second-harmonic transverse voltage response indeed originates from the nonlinear Hall effect. In contrast, for the in-plane fields, odd-type field dependence is a clear demonstration of a novel planar nonlinear Hall effect for chiral CoSi semimetal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).

    Article  ADS  Google Scholar 

  2. P. K. Das, D. D. Sante, I. Vobornik, J. Fujii, T. Okuda, E. Bruyer, A. Gyenis, B. E. Feldman, J. Tao, R. Ciancio, G. Rossi, M. N. Ali, S. Picozzi, A. Yadzani, G. Panaccione, and R. J. Cava, Nat. Commun. 7, 10847 (2016).

    Article  ADS  Google Scholar 

  3. B. Feng, Y.-H. Chan, Y. Feng, R.-Y. Liu, M.-Y. Chou, K. Kuroda, K. Yaji, A. Harasawa, P. Moras, A. Barinov, W. Malaeb, C. Bareille, T. Kondo, S. Shin, F. Komori, T.-C. Chiang, Y. Shi, and I. Matsuda, Phys. Rev. B 94, 195134 (2016).

    Article  ADS  Google Scholar 

  4. B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Science (Washington, DC, U. S.) 353, aaf5037 (2016).

    Article  Google Scholar 

  5. P. Tang, Q. Zhou, and Sh.-Ch. Zhang, Phys. Rev. Lett. 119, 206402 (2017).

    Article  ADS  Google Scholar 

  6. N. B. Schröter, D. Pei, M. G. Vergniory, Y. Sun, K. Manna, F. de Juan, J. A. Krieger, V. Süss, M. Schmidt, P. Dudin, B. Bradlyn, T. K. Kim, Th. Schmitt, C. Cacho, C. Felser, V. N. Strocov and Y. Chen, Nat. Phys. 15, 759 (2019).

    Article  Google Scholar 

  7. Zh. Rao, H. Li, T. Zhang, Sh. Tian, Ch. Li, B. Fu, C. Tang, L. Wang, Zh. Li, W. Fan, J. Li, Y. Huang, Zh. Liu, Y. Long, Ch. Fang, H. Weng, Y. Shi, H. Lei, Y. Sun, T. Qian, and H. Ding, Nature (London, U.K.) 567, 496 (2019).

    Article  ADS  Google Scholar 

  8. D. Takane, Zh. Wang, S. Souma, K. Nakayama, T. Nakamura, H. Oinuma, Y. Nakata, H. Iwasawa, C. Cacho, T. Kim, K. Horiba, H. Kumigashira, T. Takahashi, Y. Ando, and T. Sato, Phys. Rev. Lett. 122, 076402 (2019).

    Article  ADS  Google Scholar 

  9. N. B. M. Schröter, S. Stolz, K. Manna, F. Juan, M. G. Vergniory, J. A. Krieger, D. Pei, Th. Schmitt, P. Dudin, T. K. Kim, C. Cacho, B. Bradlyn, H. Borrmann, M. Schmidt, R. Widmer, et al., Science (Washington, DC, U. S.) 369, 179 (2020).

    Article  ADS  Google Scholar 

  10. I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 (2015).

    Article  ADS  Google Scholar 

  11. T. Low, Y. Jiang, and F. Guinea, Phys. Rev. B 92, 235447 (2015).

    Article  ADS  Google Scholar 

  12. Y. Zhang, J. van den Brink, C. Felser, and B. Yan, 2D Mater. 5, 044001 (2018).

  13. Z. Z. Du, C. M. Wang, H.-Z. Lu, and X. C. Xie, Phys. Rev. Lett. 121, 266601 (2018).

    Article  ADS  Google Scholar 

  14. Z. Z. Du, C. M. Wang, S. Li, H.-Z. Lu, and X. C. Xie, Nat. Commun. 10, 3047 (2019).

    Article  ADS  Google Scholar 

  15. C. Xiao, Z. Z. Du, and Q. Niu, Phys. Rev. B 100, 165422 (2019).

    Article  ADS  Google Scholar 

  16. S. Nandy and I. Sodemann, Phys. Rev. B 100, 195117 (2019).

    Article  ADS  Google Scholar 

  17. H. Wang and X. Qian, npj Comput. Mater. 5, 1 (2019).

    Google Scholar 

  18. B. T. Zhou, C.-P. Zhang, and K. T. Law, Phys. Rev. Appl. 13, 024053 (2020).

    Article  ADS  Google Scholar 

  19. H. Rostami and V. Jurićić, Phys. Rev. Res. 2, 013069 (2020).

    Article  Google Scholar 

  20. D.-F. Shao, S.-H. Zhang, G. Gurung, W. Yang, and E. Y. Tsymbal, Phys. Rev. Lett. 124, 067203 (2020).

    Article  ADS  Google Scholar 

  21. S. Singh, J. Kim, K. M. Rabe, and D. Vanderbilt, Phys. Rev. Lett. 125, 046402 (2020). https://doi.org/10.1103/Phys-RevLett.125.046402

    Article  ADS  Google Scholar 

  22. M. W.-Y. Tu, C. Li, H. Yu, and W. Yao, 2D Mater. (2020). https://doi.org/10.1088/2053-1583/ab89e8

  23. Z. Z. Du, C. M. Wang, Hai-Peng Sun, Hai-Zhou Lu, and X. C. Xie, arXiv: 2004.09742 (2020).

  24. Q. Ma, S.-Y. Xu, H. Shen, D. MacNeill, V. Fatemi, T.‑R. Chang, et al., Nature (London, U.K.) 565, 337 (2019).

    Article  ADS  Google Scholar 

  25. K. Kang, T. Li, E. Sohn, J. Shan, and K. F. Mak, Nat. Mater. 18, 324 (2019).

    Article  ADS  Google Scholar 

  26. O. O. Shvetsov, V. D. Esin, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, JETP Lett. 109, 715 (2019). https://doi.org/10.1134/S0021364019110018

    Article  ADS  Google Scholar 

  27. A. Tiwari, F. Chen, Sh. Zhong, E. Drueke, J. Koo, A. Kaczmarek, C. Xiao, J. Gao, X. Luo, Q. Niu, Y. Sun, B. Yan, L. Zhao, and A. W. Tsen, Nat. Commun. 12, 2049 (2021). https://doi.org/10.1038/s41467-021-22343-5

    Article  ADS  Google Scholar 

  28. P. He, S. S.-L. Zhang, D. Zhu, Sh. Shi, O. G. Heinonen, G. Vignale, and H. Yang, Phys. Rev. Lett. 123, 016801 (2019).

    Article  ADS  Google Scholar 

  29. N. Kumar, S. N. Guin, C. Felser, and C. Shekhar, Phys. Rev. B 98, 041103 (2018).

    Article  ADS  Google Scholar 

  30. F. C. Chen, X. Luo, J. Yan, Y. Sun, H. Y. Lv, W. J. Lu, C. Y. Xi, P. Tong, Z. G. Sheng, X. B. Zhu, W. H. Song, and Y. P. Sun, Phys. Rev. B 98, 041114 (2018).

    Article  ADS  Google Scholar 

  31. D. D. Liang, Y. J. Wang, W. L. Zhen, J. Yang, S. R. Weng, X. Yan, Y. Y. Han, W. Tong, W. K. Zhu, L. Pi, and C. J. Zhang, AIP Adv. 9, 055015 (2019).

    Article  ADS  Google Scholar 

  32. P. Li, C. Zhang, Y. Wen, L. Cheng, G. Nichols, D. G. Cory, G.-X. Miao, and X.-X. Zhang, Phys. Rev. B 100, 205128 (2019).

    Article  ADS  Google Scholar 

  33. A. A. Burkov, Phys. Rev. B 96, 041110 (2017).

    Article  ADS  Google Scholar 

  34. S. Nandy, G. Sharma, A. Taraphder, and S. Tewari, Phys. Rev. Lett. 119, 176804 (2017).

    Article  ADS  Google Scholar 

  35. D. Ma, H. Jiang, H. Liu, and X. C. Xie, Phys. Rev. B 99, 115121 (2019).

    Article  ADS  Google Scholar 

  36. O. O. Shvetsov, V. D. Esin, Yu. S. Barash, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Phys. Rev. B 101, 035304 (2020). https://doi.org/10.1103/PhysRevB.101.035304

    Article  ADS  Google Scholar 

  37. O. O. Shvetsov, V. D. Esin, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Phys. Rev. B 99, 125305 (2019). https://doi.org/10.1103/PhysRevB.99.125305

    Article  ADS  Google Scholar 

  38. D. S. Wu, Z. Y. Mi, Y. J. Li, W. Wu, P. L. Li, Y. T. Song, G. T. Liu, G. Li, and J. L. Luo, Chin. Phys. Lett. 36, 077102 (2019).

    Article  ADS  Google Scholar 

  39. O. O. Shvetsov, A. Kononov, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, JETP Lett. 107, 774 (2018). https://doi.org/10.1134/S0021364018120020

    Article  ADS  Google Scholar 

  40. O. O. Shvetsov, A. Kononov, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Eur. Phys. Lett. 124, 47003 (2018). https://doi.org/10.1209/0295-5075/124/47003

    Article  Google Scholar 

  41. A. Kononov, O. O. Shvetsov, S. V. Egorov, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Eur. Phys. Lett. 122, 27004 (2018). https://doi.org/10.1209/0295-5075/122/27004

    Article  ADS  Google Scholar 

  42. C. Fu, Th. Scaffidi, J. Waissman, Y. Sun, R. Saha, S. J. Watzman, A. K. Srivastava, G. Li, W. Schnelle, P. Werner, M. E. Kamminga, S. Sachdev, S. S. P. Parkin, S. A. Hartnoll, C. Felser, and J. Gooth, arXiv: 1802.09468.

  43. T. Zhou, Ch. Zhang, H. Zhang, F. Xiu, and Zh. Yang, Inorg. Chem. Front. 3, 1637 (2016).

    Article  Google Scholar 

  44. R. Lundgren, P. Laurell, and G. A. Fiete, Phys. Rev. B 90, 165115 (2014). https://doi.org/10.1103/Phys-RevB.90.165115

    Article  ADS  Google Scholar 

  45. K. Das and A. Agarwal, Phys. Rev. B 100, 085406 (2019). https://doi.org/10.1103/PhysRevB.100.085406

    Article  ADS  Google Scholar 

  46. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).

    Article  ADS  Google Scholar 

  47. H. Isobe, S.-Y. Xu, and L. Fu, Sci. Adv. 6, eaay2497 (2020). https://doi.org/10.1126/sciadv.aay2497

  48. A. A. Zyuzin and A. Yu. Zyuzin, Phys. Rev. B 95, 085127 (2017). https://doi.org/10.1103/PhysRevB.95.085127

    Article  ADS  Google Scholar 

  49. R.-H. Li, O. G. Heinonen, A. A. Burkov, and S. S.‑L. Zhang, Phys. Rev. B 103, 045105 (2021).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We wish to thank V.T. Dolgopolov for fruitful discussions, and S.S Khasanov for X-ray sample characterization. We gratefully acknowledge financial support by the RF State task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Deviatov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esin, V.D., Timonina, A.V., Kolesnikov, N.N. et al. Nonlinear Planar Hall Effect in Chiral Topological Semimetal CoSi. J. Exp. Theor. Phys. 133, 792–797 (2021). https://doi.org/10.1134/S1063776121120037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121120037

Navigation