Skip to main content
Log in

Features of the Motion of Ultracold Atoms in Quasiperiodic Potentials

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider here quasiperiodic potentials on the plane, which can serve as a “transitional link” between ordered (periodic) and chaotic (random) potentials. As can be shown, in almost any family of quasiperiodic potentials depending on a certain set of parameters, it is possible to distinguish a set (in the parameter space) where, according to a certain criterion, potentials with features of ordered potentials arise, and a set where we have potentials with features of random potentials. These sets complement each other in the complete parameter space, and each of them has its own specific structure. The difference between “ordered” and “chaotic” potentials will manifest itself, in particular, in the transport properties at different energies, which we consider here in relation to systems of ultracold atoms. It should be noted here also that the transport properties of particles in the considered potentials can be accompanied by the phenomena of “partial integrability” inherent in two-dimensional Hamiltonian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.

Similar content being viewed by others

Notes

  1. One of the main conditions imposed in [4, 5] on the function V(X1, X2, X3) and the rational direction of embedding \({{\mathbb{R}}^{2}}\)\({{\mathbb{R}}^{3}}\), is the absence in all planes of this direction of singular level lines connecting two different singular points of the potential, at least at one of the energy levels in the interval of the existence of open level lines. For Morse functions V(X1, X2, X3) and rational directions of embedding \({{\mathbb{R}}^{2}}\)\({{\mathbb{R}}^{3}}\) in general position, this condition is satisfied. In some physical examples, this condition may actually be violated due to the imposition of certain additional special symmetries. As we have already said, we do not assume here the special presence of such additional symmetries on the considered families of potentials. In this case, the violation of this condition an our only for some special rational directions of embedding, which, in reality, does not change the described picture in the corresponding family of quasi periodic potentials.

REFERENCES

  1. H. Bohr, Ata Math. 47, 237 (1926).

    Google Scholar 

  2. A. S. Besiovith, Proc. London Math. Soc. 2, 495 (1926).

    Google Scholar 

  3. S. P. Novikov, Russ. Math. Surv. 37, 1 (1982).

    Article  Google Scholar 

  4. A. V. Zorih, Russ. Math. Surv. 39, 287 (1984).

    Article  Google Scholar 

  5. I. A. Dynnikov, Russ. Math. Surv. 47, 172 (1992).

    Article  MathSciNet  Google Scholar 

  6. S. P. Tsarev, private commun. (1992–1993).

  7. I. A. Dynnikov, Math. Notes 53, 494 (1993).

    Article  Google Scholar 

  8. A. V. Zorih, in Proceedings of the Geometric Study of Foliations, Tokyo, November 1993, Ed. by T. Mizutani et al. (World Scientific, Singapore, 1994), p. 479.

  9. I. A. Dynnikov, in Proceedings of European Mathematical Society ECM2, BuDA, Budapest, Hungary, July 21–27, 1996.

  10. I. A. Dynnikov, Am. Math. Soc. Transl., Ser. 2 179, 45 (1997).

    MathSciNet  Google Scholar 

  11. I. A. Dynnikov, Russ. Math. Surv. 54, 21 (1999).

    Article  Google Scholar 

  12. I. M. Lifshitz and M. I. Kaganov, Sov. Phys. Usp. 2, 831 (1960).

    Article  ADS  Google Scholar 

  13. I. M. Lifshitz and M. I. Kaganov, Sov. Phys. Usp. 5, 878 (1963).

    Article  ADS  Google Scholar 

  14. I. M. Lifshitz and M. I. Kaganov, Sov. Phys. Usp. 8, 805 (1966).

    Article  ADS  Google Scholar 

  15. C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963).

    MATH  Google Scholar 

  16. I. M. Lifshitz, M. Ya. Azbel, and M. I. Kaganov, Electron Theory of Metals (Nauka, Moscow, 1971; Consultants Bureau, Adam Hilger, New York, 1973).

  17. A. A. Abrikosov, Fundamentals of the Theory of Metals (Elsevier Sci. Tehnol., Oxford, UK, 1988).

    Google Scholar 

  18. M. I. Kaganov and V. G. Peshansky, Phys. Rep. 372, 445 (2002).

    Article  ADS  Google Scholar 

  19. S. P. Novikov and A. Ya. Maltsev, JETP Lett. 63, 855 (1996).

    Article  ADS  Google Scholar 

  20. S. P. Novikov and A. Ya. Maltsev, Phys. Usp. 41, 231 (1998).

    Article  ADS  Google Scholar 

  21. A. Ya. Maltsev and S. P. Novikov, Solid State Phys., Bull. Braz. Math. Soc., New Ser. 34, 171 (2003).

  22. A. Ya. Maltsev and S. P. Novikov, J. Stat. Phys. 115, 31 (2004).

    Article  ADS  Google Scholar 

  23. S. P. Novikov, Russ. Math. Surv. 54, 1031 (1999).

    Article  Google Scholar 

  24. I. A. Dynnikov and S. P. Novikov, Russ. Math. Surv. 60, 1 (2005).

    Article  Google Scholar 

  25. E. Ott, Chaos in Dynamical Systems (Cambridge Univ. Press, Cambridge, 1983).

    MATH  Google Scholar 

  26. A. J. Lihtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer, New York, 1983; Mir, Moscow, 1984).

  27. V. S. Letokhov, JETP Lett. 7, 272 (1968).

    ADS  Google Scholar 

  28. V. Letokhov, Laser Control of Atoms and Molecules (Oxford Univ. Press, New York, 2007).

    Google Scholar 

  29. I. Bloh, Nat. Phys. 1, 23 (2005).

    Article  Google Scholar 

  30. I. Bloh, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

    Article  ADS  Google Scholar 

  31. M. Greiner and S. Folling, Nature (London, U.K.) 453, 736 (2008).

    Article  ADS  Google Scholar 

  32. A. Hemmerih, D. Shropp, Jr., and T. W. Hänsh, Phys. Rev. A 44, 1910 (1991).

    Article  ADS  Google Scholar 

  33. D. Hennequin and Ph. Verkerk, arXiv: 0906.2121 [physis.atom-ph].

  34. D. Hennequin and P. Verkerk, Eur. Phys. J. D 57, 95 (2010).

    Article  ADS  Google Scholar 

  35. L. Guidoni, C. Trihe, P. Verkerk, and G. Grynberg, Phys. Rev. Lett. 79, 3363 (1997).

    Article  ADS  Google Scholar 

  36. L. Guidoni, B. Depret, A. di Stefano, and P. Verkerk, Phys. Rev. A 60, R4233 (1999).

    Article  ADS  Google Scholar 

  37. L. Sanhez-Palenia and L. Santos, Phys. Rev. A 72, 053607 (2005).

    Article  ADS  Google Scholar 

  38. K. Viebahn, M. Sbrosia, E. Carter, J.-Ch. Yu, and U. Shneider, Phys. Rev. Lett. 122, 110404 (2019).

    Article  ADS  Google Scholar 

  39. Ronan Gautier, Hepeng Yao, and Laurent Sanchez-Palencia, Phys. Rev. Lett. 126, 110401 (2021).

  40. L. Guidoni and P. Verkerk, J. Opt. B 1, R23 (1999).

    Article  ADS  Google Scholar 

  41. S. Gopalakrishnan, I. Martin, and E. A. Demler, Phys. Rev. Lett. 111, 185304 (2013).

    Article  ADS  Google Scholar 

  42. L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 91, 090402 (2003).

    Article  ADS  Google Scholar 

  43. L. Santos, M. A. Baranov, J. I. Cira, H.-U. Everts, H. Fehrmann, and M. Lewenstein, Phys. Rev. Lett. 93, 030601 (2004).

    Article  ADS  Google Scholar 

  44. A. Ya. Maltsev, J. Math. Phys. 45, 1128 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  45. M. R. Lam, N. Peter, Th. Groh, W. Alt, C. Robens, D. Meshede, A. Negretti, S. Montangero, T. Calaro, and A. Alberti, Phys. Rev. X 11, 011035 (2021).

    Google Scholar 

  46. D. Stauer, Phys. Rep. 54, 1 (1979).

    Article  ADS  Google Scholar 

  47. J. W. Essam, Rep. Prog. Phys. 43, 833 (1980).

    Article  ADS  Google Scholar 

  48. E. K. Riedel, Phys. A (Amsterdam, Neth.) 106, 110 (1981).

  49. S. A. Trugman, Phys. Rev. B 27, 7539 (1983).

    Article  ADS  Google Scholar 

  50. A. Ya. Maltsev, J. Exp. Theor. Phys. 85, 934 (1997).

    Article  ADS  Google Scholar 

  51. A. Zorih, Am. Math. Soc. Transl., Ser. 2 197, 135 (1999).

    Google Scholar 

  52. R. de Leo, Russ. Math. Surv. 55, 166 (2000).

    Article  Google Scholar 

  53. R. de Leo, Russ. Math. Surv. 58, 1042 (2003).

    Article  Google Scholar 

  54. R. de Leo, Phys. Lett. A 332, 469 (2004).

    Article  ADS  Google Scholar 

  55. R. de Leo, Phys. B (Amsterdam, Neth.) 362, 62 (2005).

  56. R. de Leo, Exp. Math. 15, 109 (2006).

    Article  Google Scholar 

  57. R. de Leo and I. A. Dynnikov, Russ. Math. Surv. 62, 990 (2007).

    Article  Google Scholar 

  58. R. de Leo and I. A. Dynnikov, Geom. Dedic. 138, 51 (2009).

    Article  Google Scholar 

  59. A. Skriphenko, Disrete Contin. Dyn. Syst. 32, 643 (2012).

    Google Scholar 

  60. A. Skriphenko, Ann. Glob. Anal. Geom. 43, 253 (2013).

    Article  Google Scholar 

  61. I. Dynnikov and A. Skriphenko, Am. Math. Soc. Transl., Ser. 2 234, 173 (2014); arXiv: 1309.4884.

  62. I. Dynnikov and A. Skriphenko, Trans. Mosc. Math. Soc. 76, 287 (2015).

    Google Scholar 

  63. A. Avila, P. Hubert, and A. Skriphenko, Invent. Math. 206, 109 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  64. A. Avila, P. Hubert, and A. Skriphenko, Bull. Soc. Math. Fr. 144, 539 (2016).

    Article  Google Scholar 

  65. A. Ya. Maltsev and S. P. Novikov, Proc. Steklov Inst. Math. 302, 279 (2018).

    Article  Google Scholar 

  66. P. Horak, J.-Y. Courtois, and G. Grynberg, Phys. Rev. A 58, 3953 (1998).

    Article  ADS  Google Scholar 

  67. D. Boiron, C. Mennerat-Robilliard, J.-M. Fournier, L. Guidoni, C. Salomon, and G. Grynberg, Eur. Phys. J. D 7, 373 (1999).

    Article  ADS  Google Scholar 

  68. J. P. Gordon and A. Ashkin, Phys. Rev. A 21, 1606 (1980).

    Article  ADS  Google Scholar 

  69. J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 2, 1707 (1985).

    Article  ADS  Google Scholar 

  70. V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms (CRC, Boca Raton, FL, 1987)

    Google Scholar 

  71. A. P. Kazantsev, G. I. Surdutovich and V. P. Yakovlev, Mechanical Action of Light on Atoms (World Scientific, Singapore, 1990)

    Book  Google Scholar 

  72. V. Yu. Argonov and S. V. Prants, J. Exp. Theor. Phys. 96, 832 (2003).

    Article  ADS  Google Scholar 

  73. S. V. Prants, J. Exp. Theor. Phys. 131, 410 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Maltsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dynnikov, I., Maltsev, A. Features of the Motion of Ultracold Atoms in Quasiperiodic Potentials. J. Exp. Theor. Phys. 133, 711–736 (2021). https://doi.org/10.1134/S1063776121120025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121120025

Navigation