Skip to main content
Log in

Uncertainty Relation for Trigonometrical Phase-Difference Operators of Quantum Electromagnetic Fields

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The uncertainty relations for the phase-difference operators of two electromagnetic fields, which have been proposed earlier in [10], are obtained and analyzed. The uncertainty relations for the phase-difference cosine and sine operators, as well as for the operators of the sum of the photon number and phase-difference operators for two fields, are investigated. The Fock and coherent quantum states of the fields, as well as general states of quantum superpositions of coherent field states and states of the Schrödinger’s cat of the fields, are considered. The rigorous uncertainty relation (Cauchy–Schwartz inequality) and the Heisenberg uncertainty relation for these operators and quantum field states are analyzed. The differences between the rigorous uncertainty relations and the Heisenberg uncertainty relations for the trigonometric phase-difference operators are demonstrated using examples of considered field states. It is shown that the rigorous uncertainty relations and the Heisenberg uncertainty relations are qualitatively different for coherent states as well as the states of quantum superpositions, but coincide in the case of the Fock states of the fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Susskind and J. Glogower, Physics (Amsterdam, Neth.) 1, 49 (1964).

  2. P. Carruthers and M. M. Nieto, Phys. Rev. Lett. 14, 387 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 411 (1968).

    Article  ADS  Google Scholar 

  4. E. C. Lerner, Nuovo Cim. B 56, 183 (1968).

    Article  ADS  Google Scholar 

  5. R. Lynch, J. Opt. Soc. Am. B 3, 1006 (1986).

    Article  ADS  Google Scholar 

  6. R. Lynch, J. Opt. Soc. Am. B 4, 1723 (1987).

    Article  ADS  Google Scholar 

  7. J. W. Noh, A. Fougeres, and L. Mandel, Phys. Rev. A 45, 424 (1992).

    Article  ADS  Google Scholar 

  8. J. W. Noh, A. Fougeres, and L. Mandel, Phys. Rev. A 46, 2840 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Riegler and K. Wodkiewicz, Phys. Rev. A 49, 1387 (1994).

    Article  ADS  Google Scholar 

  10. A. V. Kozlovskii, J. Exp. Theor. Phys. 132, 200 (2021).

    Article  ADS  Google Scholar 

  11. E. Schrödinger, Sitzungsber. Preuss. Akad. Wissensch., Phys.-Math. Kl. 14, 296 (1930).

    Google Scholar 

  12. A. V. Kozlovskii, Opt. Spectrosc. 120, 596 (2016);

    Article  ADS  Google Scholar 

  13. Opt. Spectrosc. 128, 355 (2020).

  14. E. Schrödinger, Naturwissensch. 23, 664 (1935);

    Article  Google Scholar 

  15. Naturwissensch. 23, 823 (1935);

  16. Naturwissensch. 23, 844 (1935);

  17. J. D. Trimmer, Proc. Am. Philos. Soc. 124, 323 (1980)].

    Google Scholar 

  18. B. Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986).

    Article  ADS  Google Scholar 

  19. B. Yurke and D. Stoler, Phys. Rev. A 35, 4846 (1987).

    Article  ADS  Google Scholar 

  20. G. J. Milburn and C. A. Holmes, Phys. Rev. Lett. 56, 2237 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  21. D. F. Walls and G. J. Milburn, Phys. Rev. A 31, 2403 (1985).

    Article  ADS  Google Scholar 

  22. A. V. Kozlovskii, J. Mod. Opt. 63, 2356 (2016);

    Article  ADS  Google Scholar 

  23. J. Mod. Opt. 66, 463 (2019).

  24. W. Schleich, M. Pernigo, and Fam Le Kien, Phys. Rev. A 44, 2172 (1991).

    Article  ADS  Google Scholar 

  25. V. Buzek, A. Vidiella-Barranco, and P. L. Knight, Phys. Rev. A 45, 6570 (1992).

    Article  ADS  Google Scholar 

  26. V. Buzek, A. D. Wilson-Gordon, P. L. Knight, and W. K. Lai, Phys. Rev. A 45, 8079 (1992).

    Article  ADS  Google Scholar 

  27. D. V. Strekalov and G. Leuchs, in Quantum Photonics: Pioneering Advances and Emerging Applications, Ed. by R. Boyd, S. Lukishova, and V. Zadkov, Springer Ser. Opt. Sci. 217, 51 (2019).

  28. R. Loudon, The Quantum Theory of Light (Oxford Univ. Press, Oxford, 2000).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.V. Kozlovskii.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlovskii, A. Uncertainty Relation for Trigonometrical Phase-Difference Operators of Quantum Electromagnetic Fields. J. Exp. Theor. Phys. 133, 658–668 (2021). https://doi.org/10.1134/S1063776121110108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121110108

Navigation