Skip to main content
Log in

Effect of Heating and Cooling on the Lengths of 1D Atomic Structures

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of heating and cooling on the lengths of 1D atomic structures was investigated for the first time by the Monte Carlo method. It is shown that transitions from one equilibrium state to another during heating and cooling are different. It is found that above a certain critical temperature, the experimental system rapidly reaches thermodynamic equilibrium, while below the critical temperature, atomic diffusion is slowed down, and the system remains in a nonequilibrium state, which is observed in most experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. G. Syromyatnikov, S. V. Kolesnikov, A. M. Saletsky, and A. L. Klavsyuk, Phys. Usp. 64, 671–701 (2021).

  2. A. L. Klavsyuk and A. M. Saletsky, Phys. Usp. 58, 933 (2015).

    Article  ADS  Google Scholar 

  3. S. V. Kolesnikov and I. N. Kolesnikova, Phys. Rev. B 100, 224424 (2019).

    Article  ADS  Google Scholar 

  4. S. A. Dokukin, S. V. Kolesnikov, and A. M. Saletsky, Eur. Phys. J. B 94, 85 (2021).

    Article  ADS  Google Scholar 

  5. S. Loth, S. Baumann, C. P. Lutz, D. M. Eigler, and A. J. Heinrich, Science (Washington, DC, U. S.) 335, 196 (2012).

    Article  ADS  Google Scholar 

  6. S. Foelsch, P. Hyldgaard, R. Koch, and K. H. Ploog, Phys. Rev. Lett. 92, 056803 (2004).

    Article  ADS  Google Scholar 

  7. S. Surnev, F. Allegretti, G. Parteder, T. Franz, F. Mittendorfer, J. N. Andersen, and F. P. Netzer, Chem. Phys. Chem. 11, 2506 (2010).

    Article  Google Scholar 

  8. P. Gambardella, H. Brune, K. Kern, and V. I. Marchenko, Phys. Rev. B 73, 245425 (2006).

    Article  ADS  Google Scholar 

  9. N. Zaki, D. Potapenko, P. D. Johnson, and R. M. Osgood, Phys. Rev. B 80, 155419 (2009).

    Article  ADS  Google Scholar 

  10. P. Ferstl, L. Hammer, C. Sobel, M. Gubo, K. Heinz, M. A. Schneider, F. Mittendorfer, and J. Redinger, Phys. Rev. Lett. 117, 046101 (2016).

    Article  ADS  Google Scholar 

  11. J. Aulbach, J. Schaefer, S. C. Erwin, S. Meyer, C. Loho, J. Settelein, and R. Claessen, Phys. Rev. Lett. 111, 137203 (2013).

    Article  ADS  Google Scholar 

  12. N. S. Kabanov, R. Heimbuch, H. J. W. Zandvliet, A. M. Saletsky, and A. L. Klavsyuk, Appl. Surf. Sci. 404, 12 (2017).

    Article  ADS  Google Scholar 

  13. C. Giovanardi, A. Klein, A. Schmidt, L. Hammer, and K. Heinz, Phys. Rev. B 78, 205416 (2008).

    Article  ADS  Google Scholar 

  14. T. F. Mocking, P. Bampoulis, N. Oncel, B. Poelsema, and H. J. W. Zandvliet, Nat. Commun. 4, 2387 (2013).

    Article  ADS  Google Scholar 

  15. M. B. Yilmaz and F. M. Zimmermann, Phys. Rev. E 71, 026127 (2005).

    Article  ADS  Google Scholar 

  16. A. G. Syromyatnikov, M. R. Guseynova, A. M. Saletsky, and A. L. Klavsyuk, J. Stat. Mech.: Theory Exp. 2020, 093202 (2020).

    Article  Google Scholar 

  17. J. G. Amar, M. N. Popescu, and F. Family, Phys. Rev. Lett. 86, 3092 (2001).

    Article  ADS  Google Scholar 

  18. J. Javorský, M. Setvín, I. Ošt'ádal, P. Sobotík, and M. Kotrla, Phys. Rev. B 79, 165424 (2009).

    Article  ADS  Google Scholar 

  19. J. R. Albia and M. A. Albao, Phys. Rev. E 95, 042802 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  20. D. L. González, M. Camargo, and J. A. Sánchez, Phys. Rev. E 97, 052802 (2018).

    Article  ADS  Google Scholar 

  21. A. G. Syromyatnikov, A. M. Saletsky, and A. L. Klavsyuk, Phys. Rev. B 97, 235444 (2018).

    Article  ADS  Google Scholar 

  22. A. G. Syromyatnikov, A. M. Saletsky, and A. L. Klavsyuk, Surf. Sci. 693, 121528 (2020).

    Article  Google Scholar 

  23. A. G. Syromyatnikov, A. M. Saletsky, and A. L. Klavsyuk, JETP Lett. 107, 766 (2018).

    Article  ADS  Google Scholar 

  24. A. G. Syromyatnikov, A. M. Saletsky, and A. L. Klavsyuk, JETP Lett. 110, 348 (2019).

    Article  ADS  Google Scholar 

  25. A. Ramadan, F. Picaud, and C. Ramseyer, Surf. Sci. 604, 1576 (2010).

    Article  ADS  Google Scholar 

  26. V. I. Tokar and H. Dreyssé, Surf. Sci. 637638, 116 (2015).

  27. H. Garbouj, M. Said, F. Picaud, C. Ramseyer, D. Spanjaard, and M. C. Desjonqueres, Surf. Sci. 603, 22 (2009).

    Article  ADS  Google Scholar 

  28. J. W. Evans, P. A. Thiel, and M. C. Bartelt, Surf. Sci. Rep. 61, 1 (2006).

    Article  ADS  Google Scholar 

  29. M. Einax, W. Dieterich, and P. Maass, Rev. Mod. Phys. 85, 921 (2013).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used the computer resources of the Research Computing Center of the Moscow State University.

Funding

This work was supported by the Russian Science Foundation (project no. 21-72-20034) and in part by the State assignment (theme V.45.12, 0082-2014-0012, no. AAAA-A20-120021390044-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Syromyatnikov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syromyatnikov, A.G., Kudryashov, S.A., Saletsky, A.M. et al. Effect of Heating and Cooling on the Lengths of 1D Atomic Structures. J. Exp. Theor. Phys. 133, 347–350 (2021). https://doi.org/10.1134/S1063776121090120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121090120

Navigation