Skip to main content
Log in

Electronic Properties of NiO at Ultrahigh Pressure

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of the high pressure on the electronic properties of NiO is studied within the multielectron approach. The low energy physics is described by the effective Hubbard model based on Ni d-electrons and O p-electrons in three charge sectors of the Hilbert space: neutral states (configurations d8 + d9L + d10L2), electron removal states (configurations d7 + d8L + d9L2), and electron addition states (d9 + d10L) with L denotes a ligand hole. Due to a high spin (HS)-low spin (LS) crossover in the electron removal states at pressure PS determined by a competition of the intraatomic Hund exchange interaction and increasing with pressure crystal field 10Dq, the effective Hubbard parameter Ueff and the insulator gap Eg depend on pressure. We find weak increasing of Eg for P < PS and weak decreasing Eg for P > PS. The Mott-Hubbard transition pressure is estimated to be in the interval 450–650 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. N. F. Mott, Metal-Insulator Transitions, 2nd ed. (Taylor and Francis, London, 1990).

    Book  Google Scholar 

  2. I. G. Austin and N. F. Mott, Science (Washington, DC, U. S.) 168, 71 (1970).

    Article  ADS  Google Scholar 

  3. R. E. Cohen, I. I. Mazin, and D.G. Isaak, Science (Washington, DC, U. S.) 275, 654 (1997).

    Article  Google Scholar 

  4. J. Kunes, A. V. Lukoyanov, V. I. Anisimov, et al., Nat. Mater. 7, 198 (2008).

    Article  ADS  Google Scholar 

  5. J.-P. Rueff, A. Mattila, J. Badro, et al., J. Phys.: Condens. Matter 17, S717 (2005).

    Google Scholar 

  6. C. S. Yoo, B. Maddox, J.-H. P. Klepeis, et al., Phys. Rev. Lett. 94, 115502 (2005).

    Article  ADS  Google Scholar 

  7. Q. Guo, H. K. Mao, J. Hu, et al., J. Phys.: Condens. Matter 14, 11369 (2002).

    ADS  Google Scholar 

  8. T. Atou, M. Kawasaki, and S. Nakajima, Jpn. J. Appl. Phys. 43, L1281 (2004).

    Article  ADS  Google Scholar 

  9. T. Eto, S. Endo, M. Imai, et al., Phys. Rev. B 61, 14984 (2000).

    Article  ADS  Google Scholar 

  10. V. Potapkin, L. Dubrovinsky, I. Sergueev, et al., Phys. Rev. B 93, 201110 (2016).

    Article  ADS  Google Scholar 

  11. A. G. Gavriliuk, I. A. Trojan, and V. V. Struzhkin, Phys. Rev. Lett. 109, 086402 (2012).

    Article  ADS  Google Scholar 

  12. W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).

    Article  ADS  Google Scholar 

  13. T. C. Leung, C. T. Chan, and B. N. Harmon, Phys. Rev. B 44, 2923 (1991).

    Article  ADS  Google Scholar 

  14. A. Fujimori and F. Minami, Phys. Rev. B 29, 5225 (1984).

    Article  ADS  Google Scholar 

  15. G. v. d. Laan, C. Westra, C. Haas, et al., Phys. Rev. B 23, 4369 (1981).

    Article  ADS  Google Scholar 

  16. G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 53, 2339 (1984).

    Article  ADS  Google Scholar 

  17. J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).

    Article  ADS  Google Scholar 

  18. C.-Y. Kuo, T. Haupricht, J. Weinen, et al., Eur. Phys. J. Spec. Top. 226, 2445 (2017).

    Article  Google Scholar 

  19. N. Bulut, D. J. Scalapino, and S. R. White, Phys. Rev. B 50, 7215 (1994).

    Article  ADS  Google Scholar 

  20. R. Preuss, W. Hanke, and W. von der Linden, Phys. Rev. Lett. 75, 1344 (1995).

    Article  ADS  Google Scholar 

  21. R. Preuss, W. Hanke, C. Gröber, et al., Phys. Rev. Lett. 79, 1122 (1997).

    Article  ADS  Google Scholar 

  22. C. Gröber, R. Eder, and W. Hanke, Phys. Rev. B 62, 4336 (2000).

    Article  ADS  Google Scholar 

  23. B. Moritz, F. Schmitt, W. Meevasana, et al., New J. Phys. 11, 093020 (2009).

    Article  ADS  Google Scholar 

  24. D. Sénéchal, D. Perez, and M. Pioro-Ladrière, Phys. Rev. Lett. 84, 522 (2000).

    Article  ADS  Google Scholar 

  25. D. Sénéchal, D. Perez, and D. Plouffe, Phys. Rev. B 66, 075129 (2002).

    Article  ADS  Google Scholar 

  26. M. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003).

    Article  ADS  Google Scholar 

  27. A. Georges, G. Kotliar, W. Krauth, et al., Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  Google Scholar 

  28. M. H. Hettler, M. Mukherjee, M. Jarrell, et al., Phys. Rev. B 61, 12739 (2000).

    Article  ADS  Google Scholar 

  29. T. Maier, M. Jarrell, T. Pruschke, et al., Rev. Mod. Phys. 77, 1027 (2005).

    Article  ADS  Google Scholar 

  30. R. O. Zaitsev, Sov. Phys. JETP 43, 574 (1976).

    ADS  Google Scholar 

  31. N. M. Plakida and V. S. Oudovenko, J. Exp. Theor. Phys. 104, 230 (2007).

    Article  ADS  Google Scholar 

  32. A. Avella and F. Mancini, Phys. Rev. B 75, 134518 (2007).

    Article  ADS  Google Scholar 

  33. M. M. Korshunov and S. G. Ovchinnikov, Eur. Phys. J. B 57, 271 (2007).

    Article  ADS  Google Scholar 

  34. A. Sherman, J. Phys.: Condens. Matter 30, 195601 (2018).

    ADS  Google Scholar 

  35. G. Rohringer, H. Hafermann, A. Toschi, et al., Rev. Mod. Phys. 90, 025003 (2018).

    Article  ADS  Google Scholar 

  36. V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, et al., J. Phys.: Condens. Matter 9, 7359 (1997).

    ADS  Google Scholar 

  37. A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884 (1998).

    Article  ADS  Google Scholar 

  38. K. Held, I. A. Nekrasov, N. Blumer, et al., Int. J. Mod. Phys. B 15, 2611 (2001).

    Article  ADS  Google Scholar 

  39. G. Kotliar, S. Y. Savrasov, K. Haule, et al., Rev. Mod. Phys. 78, 865 (2006).

    Article  ADS  Google Scholar 

  40. M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, et al., Phys. Rev. B 58, R7475 (1998).

    Article  ADS  Google Scholar 

  41. G. Kotliar, S. Y. Savrasov, G. Palsson, et al., Phys. Rev. Lett. 87, 186401 (2001).

    Article  ADS  Google Scholar 

  42. M. Potthoff, Eur. Phys. J. B 32, 249 (2003).

    Article  Google Scholar 

  43. S. G. Ovchinnikov and I. S. Sandalov, Phys. C (Amsterdam, Neth.) 161, 607 (1989).

  44. J. C. Hubbard, Proc. R. Soc. London, Ser. A 285, 542 (1965).

    Article  ADS  Google Scholar 

  45. M. M. Korshunov, V. A. Gavrichkov, S. G. Ovchinnikov, Z. V. Pchelkina, I. A. Nekrasov, M. A. Korotin, and V. I. Anisimov, J. Exp. Theor. Phys. 99, 559 (2004).

    Article  ADS  Google Scholar 

  46. M. M. Korshunov, S. G. Ovchinnikov, E. I. Shneyder, et al., Mod. Phys. Lett. B 26, 1230016 (2012).

    Article  ADS  Google Scholar 

  47. S. G. Ovchinnikov, J. Exp. Theor. Phys. 107, 140 (2008).

    Article  ADS  Google Scholar 

  48. I. S. Lyubutin, S. G. Ovchinnikov, A. G. Gavriliuk, et al., Phys. Rev. B 79, 085125 (2009).

    Article  ADS  Google Scholar 

  49. V. A. Gavrichkov, Yu. S. Orlov, T. M. Ovchinnikova, et al., JETP Lett. 112, 241 (2020).

    Article  ADS  Google Scholar 

  50. A. G. Gavrilyuk, I. A. Trojan, I. S. Lyubutin, et al., J. Exp. Theor. Phys. 92, 696 (2001).

    Article  ADS  Google Scholar 

  51. M. J. Massey, N. H. Chen, J. W. Allen, et al., Phys. Rev. B 42, 8776 (1990).

    Article  ADS  Google Scholar 

  52. H. Lehmann, Nuovo Cim. 11, 342 (1954).

    Article  ADS  Google Scholar 

  53. R. Zaitsev, Sov. Phys. JETP 68, 207 (1975).

    Google Scholar 

  54. S. Ovchinnikov and V. Val’kov, Hubbard Operators in the Theory of Strongly Correlated Electrons (Imperial College Press, London, 2004).

    Book  MATH  Google Scholar 

  55. S. G. Ovchinnikov, Phys. Usp. 40, 993 (1997).

    Article  ADS  Google Scholar 

  56. Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954).

    Article  ADS  Google Scholar 

  57. A. G. Gavrilyuk, I. A. Troyan, S. G. Ovchinnikov, et al., J. Exp. Theor. Phys. 99, 566 (2004).

    Article  ADS  Google Scholar 

  58. S. G. Ovchinnikov, J. Exp. Theor. Phys. 116, 123 (2013).

    Article  ADS  Google Scholar 

  59. D. R. Stephens and H. G. Drickamer, J. Chem. Phys. 34, 937 (1961).

    Article  ADS  Google Scholar 

  60. D. Reinen, Ber. Bunsenges Phys. Chem. 69, 82 (1965).

    Article  Google Scholar 

  61. P. W. Anderson, Phys. Rev. 115, 2 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  62. V. A. Gavrichkov, S. I. Polukeev, and S. G. Ovchinnikov, Phys. Rev. B 101, 094409 (2020).

    Article  ADS  Google Scholar 

  63. W. A. Harrison, Elementary Electronic Structure (World Scientific, Singapore, 1999).

    Book  Google Scholar 

  64. L. Liu, X. D. Li, J. Liu, et al., J. Appl. Phys. 104, 113521 (2008).

    Article  ADS  Google Scholar 

  65. E. Huang, High Press. Res. 13, 307 (1995).

    Article  ADS  Google Scholar 

  66. S. Hufner, J. Osterwalder, T. Riesterer, et al., Solid State Commun. 52, 793 (1984).

    Article  ADS  Google Scholar 

  67. E. Z. Kurmaev, R. G. Wilks, A. Moewes, et al., Phys. Rev. B 77, 165127 (2008).

    Article  ADS  Google Scholar 

  68. B. Brandow, Adv. Phys. 26, 651 (1977).

    Article  ADS  Google Scholar 

  69. Z.-X. Shen, R. S. List, D. S. Dessau, et al., Phys. Rev. B 44, 3604 (1991).

    Article  ADS  Google Scholar 

  70. J. Kunes, V. I. Anisimov, S. L. Skornyakov, et al., Phys. Rev. Lett. 99, 156404 (2007).

    Article  ADS  Google Scholar 

  71. M. R. Norman and A. J. Freeman, Phys. Rev. B 33, 8896 (1986).

    Article  ADS  Google Scholar 

  72. D. D. Sarma, J. Solid State Chem. 88, 45 (1990).

    Article  ADS  Google Scholar 

  73. G. J. M. Janssen and W. C. Nieuwpoort, Phys. Rev. B 38, 3449 (1988).

    Article  ADS  Google Scholar 

  74. Z.-X. Shen, C. K. Shih, O. Jepsen, et al., Phys. Rev. Lett. 64, 2442 (1990).

    Article  ADS  Google Scholar 

  75. V. I. Anisimov, I. V. Solovyev, M. A. Korotin, et al., Phys. Rev. B 48, 16929 (1993).

    Article  ADS  Google Scholar 

  76. V. I. Anisimov, P. Kuiper, and J. Nordgren, Phys. Rev. B 50, 8257 (1994).

    Article  ADS  Google Scholar 

  77. O. Bengone, M. Alouani, P. Blöchl, et al., Phys. Rev. B 62, 16392 (2000).

    Article  ADS  Google Scholar 

  78. X. Ren, I. Leonov, G. Keller, et al., Phys. Rev. B 74, 195114 (2006).

    Article  ADS  Google Scholar 

  79. C. Rodl, F. Fuchs, J. Furthmuller, et al., Phys. Rev. B 79, 235114 (2009).

    Article  ADS  Google Scholar 

  80. H. Jiang, R. I. Gomez-Abal, P. Rinke, et al., Phys. Rev. B 82, 045108 (2010).

    Article  ADS  Google Scholar 

  81. P. Thunstrom, I. di Marco, and O. Eriksson, Phys. Rev. Lett. 109, 186401 (2012).

    Article  ADS  Google Scholar 

  82. S. Das, J. E. Coulter, and E. Manousakis, Phys. Rev. B 91, 115105 (2015).

    Article  ADS  Google Scholar 

  83. S. K. Panda, H. Jiang, and S. Biermann, Phys. Rev. B 96, 045137 (2017).

    Article  ADS  Google Scholar 

  84. X.-B. Feng and N. M. Harrison, Phys. Rev. B 69, 035114 (2004).

    Article  ADS  Google Scholar 

  85. D. E. Eastman and J. L. Freeouf, Phys. Rev. Lett. 34, 395 (1975).

    Article  ADS  Google Scholar 

  86. S. J. Oh, J. W. Allen, I. Lindau, et al., Phys. Rev. B 26, 4845 (1982).

    Article  ADS  Google Scholar 

  87. G. van der Laan, J. Zaanen, G. A. Sawatzky, et al., Phys. Rev. B 33, 4253 (1986).

    Article  ADS  Google Scholar 

  88. O. Tjernberg, S. Söderholm, U. O. Karlsson, et al., Phys. Rev. B 53, 10372 (1996).

    Article  ADS  Google Scholar 

  89. M. Taguchi, M. Matsunami, Y. Ishida, et al., Phys. Rev. Lett. 100, 206401 (2008).

    Article  ADS  Google Scholar 

  90. J. Weinen, T. Koethe, C. Chang, et al., J. Electron Spectrosc. Relat. Phenom. 198, 6 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to Dr. Alexander Gavriliuk and Dr. Leonid Dubrovinsky for stimulating discussions. We thank the Russian Science Foundation for the financial support under the project no. 18-12-00022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Ovchinnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikov, S.G., Ovchinnikova, T.M. Electronic Properties of NiO at Ultrahigh Pressure. J. Exp. Theor. Phys. 133, 374–381 (2021). https://doi.org/10.1134/S106377612109003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612109003X

Navigation