Skip to main content
Log in

Gamma-Rays and Neutrinos from Proton-Proton Interactions in Gamma-Ray Bursts

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Expansion of relativistic outflows of gamma-ray bursts (GRB) into medium created by the winds or their progenitor stars is accompanied by interactions of picked-up protons with the medium. These interactions produce neutrinos and γ-rays with energies in the TeV-PeV range. We study if such neutrinos and γ‑rays are detectable with neutrino and γ-ray telescopes. We find that neutrino signal can be detectable with IceCube-Gen2 type telescope(s) if the GRB progenitor has been a low-metallicity star with initial mass (40‒100)\({{M}_{ \odot }}\), or if the progenitor system has been a binary with dense circumstellar environment (~1013 cm–3) within the binary system extent. γ-ray emission from pion decays is detectable only in the afterglow phase, because of the pair production opacity of the prompt emission. This emission can contribute to the TeV afterglow flux of GRBs. Detection of the pion decay γ-ray and neutrino emission can serve as a diagnostic of the GRB progenitor evolution during the last years of its life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. We use the system of units with the speed of light c = 1.

REFERENCES

  1. K. Davidson and R. M. Humphreys, Ann. Rev. Astron. Astrophys. 35, 1 (1997). https://doi.org/10.1146/annurev.astro.35.1.1

    Article  ADS  Google Scholar 

  2. B. Paczyński, Astrophys. J. 494, L45 (1998). https://doi.org/10.1086/311148

    Article  ADS  Google Scholar 

  3. T. Piran, Phys. Rep. 314, 575 (1999); astro-ph/9810256.

    Article  ADS  Google Scholar 

  4. P. Kumar and B. Zhang, Phys. Rep. 561, 1 (2015); arXiv: 1410.0679.

    Article  ADS  Google Scholar 

  5. P. Meszaros and M. J. Rees, Mon. Not. R. Astron. Soc. 269, L41 (1994); astro-ph/9404056.

    Article  ADS  Google Scholar 

  6. H. Abdalla, R. Adam, F. Aharonian, F. Ait Benkhali, E. O. Angüner, M. Arakawa, C. Arcaro, C. Armand, H. Ashkar, M. Backes, et al., Nature (London, U.K.) 575, 464 (2019). https://doi.org/10.1038/s41586-019-1743-9

    Article  ADS  Google Scholar 

  7. H. Abdalla, R. Adam, F. Aharonian, F. Ait Benkhali, E. O. Angüner, M. Arakawa, C. Arcaro, C. Armand, H. Ashkar, M. Backes, et al., Nature (London, U.K.) 575, 464 (2019); arXiv: 1911.08961.

  8. V. A. Acciari, S. Ansoldi, L. A. Antonelli, A. Arbet Engels, D. Baack, A. Babić, B. Banerjee, U. Barres de Almeida, J. A. Barrio, J. B. González, et al., Nature (London, U.K.) 575, 455 (2019). https://doi.org/10.1038/s41586-019-1750-x

    Article  ADS  Google Scholar 

  9. V. A. Acciari, S. Ansoldi, L. A. Antonelli, A. A. Engels, D. Baack, A. Babić, B. Banerjee, U. Barres de Almeida, J. A. Barrio, J. B. González, et al., Nature (London, U.K.) 575, 459 (2019). https://doi.org/10.1038/s41586-019-1754-6

    Article  ADS  Google Scholar 

  10. R. Sari, T. Piran, and R. Narayan, Astrophys. J. Lett. 497, L17 (1998); astro-ph/9712005.

    Article  ADS  Google Scholar 

  11. L. Nava, Int. J. Mod. Phys. D 27, 1842003 (2018); arXiv: 1804.01524.

  12. X.-Y. Wang, R.-Y. Liu, and M. Lemoine, Astrophys. J. 771, L33 (2013); arXiv: 1305.1494.

    Article  ADS  Google Scholar 

  13. Q.-W. Tang, P.-H. T. Tam, and X.-Y. Wang, Astrophys. J. 788, 156 (2014); arXiv: 1405.0451.

    Article  ADS  Google Scholar 

  14. E. Waxman and J. Bahcall, Phys. Rev. Lett. 78, 2292 (1997). https://doi.org/10.1103/PhysRevLett.78.2292

    Article  ADS  Google Scholar 

  15. J. I. Katz, Astrophys. J. Lett. 432, L27 (1994); astro-ph/9405033.

    Article  ADS  Google Scholar 

  16. B. Paczynski and G. Xu, Astrophys. J. 427, 708 (1994).

    Article  ADS  Google Scholar 

  17. M. Ostrowski and A. A. Zdziarski, Astrophys. Space Sci. 231, 339 (1995).

    Article  ADS  Google Scholar 

  18. F. Halzen and G. Jaczko, Phys. Rev. D 54, 2779 (1996).

    Article  ADS  Google Scholar 

  19. A. Heger, S. E. Woosley, C. L. Fryer, and N. Langer, in From Twilight to Highlight: The Physics of Supernovae, Proceedings of the ESO/MPA/MPE Workshop, Garching, Germany, July 29–31, 2002 (2003), p. 3. https://doi.org/10.1007/10828549_1

  20. M. J. Barlow, L. J. Smith, and A. J. Willis, Mon. Not. R. Astron. Soc. 196, 101 (1981).

    Article  ADS  Google Scholar 

  21. J. J. Eldridge, F. Genet, F. Daigne, and R. Mochkovitch, Mon. Not. R. Astron. Soc. 367, 186 (2006). https://doi.org/10.1111/j.1365-2966.2005.09938.x

    Article  ADS  Google Scholar 

  22. K. Belczynski, M. Dominik, T. Bulik, R. O’Shaughnessy, C. Fryer, and D. E. Holz, Astrophys. J. Lett. 715, L138 (2010); arXiv: 1004.0386.

    Article  ADS  Google Scholar 

  23. P. A. Crowther, Ann. Rev. Astron. Astrophys. 45, 177 (2007). https://doi.org/10.1146/annurev.astro.45.051806.110615

    Article  ADS  Google Scholar 

  24. L. Sironi, U. Keshet, and M. Lemoine, Space Sci. Rev. 191, 519 (2015); arXiv: 1506.02034.

  25. R. D. Blandford and C. F. McKee, Phys. Fluids 19, 1130 (1976).

    Article  ADS  Google Scholar 

  26. S. R. Kelner, F. A. Aharonian, and V. V. Bugayov, Phys. Rev. D 74, 034018 (2006); astro-ph/0606058.

    Article  ADS  Google Scholar 

  27. M. Kachelrie, I. V. Moskalenko, and S. Ostapchenko, Comput. Phys. Commun. 245, 106846 (2019); arXiv: 1904.05129.

  28. S. R. Kelner, F. A. Aharonian, and V. V. Bugayov, Phys. Rev. D 74, 034018 (2006); astro-ph/0606058.

    Article  ADS  Google Scholar 

  29. M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, I. A. Samarai, D. Altmann, K. Andeen, et al. (IceCube Collab.), arXiv: 1710.01191 (2017).

  30. M. G. Aartsen, R. Abbasi, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, C. Alispach, et al. (IceCube-Gen2 Collab.), arXiv: 2008.04323 (2020).

  31. A. Avrorin et al. (Baikal-GVD), PoS ICRC 2019, 1013 (2020); arXiv: 1908.05450.

  32. S. Adrián-Martínez, M. Ageron, F. Aharonian, S. Aiello, A. Albert, F. Ameli, E. Anassontzis, M. Andre, G. Androulakis, M. Anghinol, et al., J.  Phys. G: Nucl. Part. Phys. 43, 084001 (2016). https://doi.org/10.1088/0954-3899/43/8/084001 https://doi.org/10.1088/0954-3899%2F43%2F8%2F084001

    Article  ADS  Google Scholar 

  33. P. Bhattacharjee and N. Gupta, Astropart. Phys. 20, 169 (2003); astro-ph/0211165.

    Article  ADS  Google Scholar 

  34. E. Derishev and T. Piran, Astrophys. J. 880, L27 (2019). https://doi.org/10.3847/2041-8213/ab2d8a

    Article  ADS  Google Scholar 

  35. M. Ajello, M. Arimoto, M. Axelsson, L. Baldini, G. Barbiellini, D. Bastieri, R. Bellazzini, A. Berretta, E. Bissaldi, R. D. Blandford, et al., Astrophys. J. 890, 9 (2020); arXiv: 1909.10605.

  36. V. A. Acciari, S. Ansoldi, L. A. Antonelli, A. A. Engels, D. Baack, A. Babić, B. Banerjee, U. Barres de Almeida, J. A. Barrio, et al. (MAGIC Collab.), Nature (London, U.K.) 575, 459 (2019); arXiv: 2006.07251.

Download references

ACKNOWLEDGMENTS

This work is supported by the Ministry of science and higher education of Russian Federation under the contract 075-15-2020-778 in the framework of the Large scientific projects program within the national project “Science.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Neronov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neronov, A., Gatelet, Y. Gamma-Rays and Neutrinos from Proton-Proton Interactions in Gamma-Ray Bursts. J. Exp. Theor. Phys. 133, 305–312 (2021). https://doi.org/10.1134/S1063776121090028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121090028

Navigation