Skip to main content
Log in

Side Channels of Information Leakage in Quantum Cryptography: Nonstrictly Single-Photon States, Different Quantum Efficiencies of Detectors, and Finite Transmitted Sequences

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The implementation of quantum cryptography systems significantly differs from idealized models used to prove the secrecy of distributed keys. Without taking into account the imperfections of real systems, it is impossible to seriously talk about cryptographic strength. The practical use of quantum cryptography systems requires taking into account all the real factors affecting the secrecy of distributed keys. In this paper, in fact an analytical method is proposed that takes into account the nonstrict single-photon nature of information states, different quantum efficiencies of detectors, fluctuations of parameters due to finite transmitted sequences, information leakage through side channels during both passive detection of side radiation and active probing of the components of the system. The states in the side channels may have extremely low intensity; therefore, they are considered in quantum terms. The maximum possible total information leakage to the eavesdropper in all channels is achieved in joint collective measurements of both quantum information states and quantum states in side channels. The method is applicable to any spectral distribution of the number of photons in side channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, p. 175.

  2. P. Smulders, Comput. Secur. 9, 53 (1990).

    Article  Google Scholar 

  3. M. G. Kuhn, Tech. Rep. No. UCAM-CL-TR-577 (Cambridge Univ., 2003).

  4. R. Renner, PhD Thesis (ETH Zürich, 2005); arXiv: 0512258 [quant-ph].

  5. M. Tomamichel, Ch. Ci Wen Lim, N. Gisin, and R. Renner, arXiv: 1103.4130v2; Nat. Commun. 3, 1 (2012).

    Article  Google Scholar 

  6. C.-H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, Quant. Inf. Comput. 9, 131 (2009).

    Google Scholar 

  7. S. N. Molotkov, J. Exp. Theor. Phys. 130, 809 (2020).

    Article  ADS  Google Scholar 

  8. S. N. Molotkov, J. Exp. Theor. Phys. 131, 877 (2020).

    Article  ADS  Google Scholar 

  9. H. P. Yuen, Phys. Rev. A 82, 062304 (2010);

    Article  ADS  Google Scholar 

  10. H. P. Yuen, arXiv: 1109.1051 [quant-ph]; H. P. Yuen, arXiv: 1109.2675 [quant-ph]; H. P. Yuen, arXiv: 1109.1066 [quant-ph].

  11. R. Renner, arXiv: 1209.2423 [quant-ph].

  12. I. M. Arbekov and S. N. Molotkov, J. Exp. Theor. Phys. 125, 50 (2017).

    Article  ADS  Google Scholar 

  13. J. L. Carter and M. N. Wegman, J. Comp. Syst. Sci. 18, 143 (1979).

    Article  Google Scholar 

  14. K. Kraus, States, Effects and Operations: Fundamental Notions of Quantum Theory (Springer, Berlin, 1983).

    Book  Google Scholar 

  15. W. F. Stinespring, Proc. Am. Math. Soc., 211 (1955).

  16. S. N. Molotkov, J. Exp. Theor. Phys. 126, 741 (2018).

    Article  ADS  Google Scholar 

  17. S. N. Molotkov, Laser Phys. Lett. 18, 045202 (2021).

    Article  ADS  Google Scholar 

  18. P. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).

    Article  ADS  Google Scholar 

  19. S. Bouceron, G. Lugosi, and P. Massart, Concentration Inequalities. A Nonasymptotic Theory of Independence (Clarendon, Oxford, 2012).

    Google Scholar 

  20. Won-Young Hwang, arXiv: 0211153 [quant-ph].

  21. Xiang-Bin Wang, Phys. Rev. Lett. 94, 230503 (2005).

    Article  ADS  Google Scholar 

  22. Hoi-Kwong Lo, Xiongfeng Ma, and Kai Chen, Phys. Rev. Lett. 94, 230504 (2005).

    Article  ADS  Google Scholar 

  23. Xiongfeng Ma, Bing Qi, Yi Zhao, and Hoi-Kwong Lo, arXiv: 0503005 [quant-ph].

  24. K. Tamaki, M. Curty, and M. Lucamarini, New J. Phys. 18, 065008 (2016).

    Article  ADS  Google Scholar 

  25. M. Pereira, M. Curty, and K. Tamaki, Quant. Inf. 62, 1 (2019).

    Google Scholar 

  26. W. Wang, K. Tamaki, and M. Curty, New J. Phys. 20, 083027 (2018).

    Article  ADS  Google Scholar 

  27. R. M. Wood, Laser-Induced Damage of Optical Materials (Taylor and Francis, London, 2003).

    Book  Google Scholar 

  28. H. J. Landau and H. O. Pollak, Bell Syst. Technol. J. 40, 65 (1961).

    Article  Google Scholar 

  29. D. Slepian and H. O. Pollak, Bell Syst. Technol. J. 40, 43 (1961).

    Article  Google Scholar 

  30. W. H. J. Fuchs, J. Math. Anal. Appl. 9, 317 (1964).

    Article  MathSciNet  Google Scholar 

  31. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

  32. A. S. Holevo, Probl. Inf. Transm. 9, 177 (1973).

    Google Scholar 

  33. A. S. Kholevo, Usp. Mat. Nauk 53, 193 (1998).

    Article  Google Scholar 

  34. A. S. Kholevo, Quantum Systems, Channels, Information (MTsMO, Moscow, 2010) [in Russian].

Download references

ACKNOWLEDGMENTS

I am grateful to my colleagues from the Academy of Cryptography of the Russian Federation for discussions and support, as well as to I.M. Arbekov and S.P. Kulik for numerous interesting discussions and remarks that helped to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Molotkov.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molotkov, S.N. Side Channels of Information Leakage in Quantum Cryptography: Nonstrictly Single-Photon States, Different Quantum Efficiencies of Detectors, and Finite Transmitted Sequences. J. Exp. Theor. Phys. 133, 272–304 (2021). https://doi.org/10.1134/S1063776121080136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121080136

Navigation