Skip to main content
Log in

Polariton-Type Dispersion Laws for Four-Level Atoms with Nonequidistant Energy Spectrum That Interact with Three Laser Pulses

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Characteristic features of polariton dispersion laws are studied for four-level atoms interacting with three pulses of coherent laser radiation with frequencies that are in resonance with optically allowed one-photon transitions 1 \(\leftrightarrows\) 2, 2 \(\leftrightarrows\) 3, and 3 \(\leftrightarrows\) 4 with regard to two-photon transitions 1 \(\leftrightarrows\) 3 and 2 \(\leftrightarrows\) 4, as well as a direct three-photon transition 1 \(\leftrightarrows\) 4. The approximation of a given photon density of three pulses is used. It is shown that the dispersion law consists of four branches the position and shape of which are specified by the Rabi frequencies of the above transitions and the photon densities of the three pulses. The direct consideration of all six optical transitions leads to the dependence of the dispersion law of atomic polaritons on quantum parameters—the phase differences between the Rabi frequencies of the transitions under consideration. Parameter values are found for which the branches of the dispersion law may intersect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. H. Deng, H. Haug, and Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010).

    Article  ADS  Google Scholar 

  2. I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).

    Article  ADS  Google Scholar 

  3. Y. Kasprzak, M. Richard, S. Kindermann, A. Baas, P.  Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Nature (London, U.K.) 443, 409 (2006).

    Article  ADS  Google Scholar 

  4. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science (Washington, DC, U. S.) 316, 1007 (2007).

    Article  ADS  Google Scholar 

  5. A. Kogar, M. S. Rak, S. Vig, A. A. Husain, F. Flicker, Y. I. Joe, L. Venema, G. J. MacDougall, T. C. Chiang, E. Fradkin, Y. van Vezel, and P. Abbamonte, Science (Washington, DC, U. S.) 358, 1314 (2017).

    Article  ADS  Google Scholar 

  6. V. Agranovich, H. Benisty, and C. Weisbuch, Solid State Commun. 102, 631 (1997).

    Article  ADS  Google Scholar 

  7. O. A. Dubovskii and V. M. Agranovich, Phys. Solid State 58, 1420 (2016).

    Article  ADS  Google Scholar 

  8. M. L. Ter-Mikaelyan, Phys. Usp. 40, 1195 (1997).

    Article  ADS  Google Scholar 

  9. E. G. Kanetsyan, Nauch. Tr. NUASA 3 (5), 144 (2014).

    Google Scholar 

  10. S. N. Sandhya, J. Phys. B 40, 837 (2007).

    Article  ADS  Google Scholar 

  11. G. Solookinejad, M. Jabbari, M. Nafar, E. Ahmadi Sangachin, and S. H. Asadpour, Int. J. Theor. Phys. 58, 1359 (2019).

    Article  Google Scholar 

  12. P. Kumar and Sh. Dasgupta, Phys. Rev. A 94, 023851, (2016).

    Article  ADS  Google Scholar 

  13. E. O. Nyakang‘o, D. Shylla, K. Indumathi, and K. Pandey, Eur. Phys. J. D 74 (9), 187 (2020).

  14. T. M. Autry, G. Nardin, C. L. Smallwood, K. Silverman, D. Bajoni, A. Lemaître, S. Bouchoule, J. Bloch, and S. Cundif, arXiv: 2004.10845v1 (2020).

  15. E. D. Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, Phys. Rev. B 81, 035302 (2010).

    Article  ADS  Google Scholar 

  16. S. M. Yoshida, S. Endo, J. Levinsen, and M. M. Parish, Phys. Rev. X 8, 011024 (2018).

    Google Scholar 

  17. Z. Tan, L. Wang, M. Liu, Y. Zhu, J. Wang, and M. Zhan, arXiv: 1901.00127v1 (2019).

  18. E. A. Yakshina, D. B. Tret’yakov, V. M. Entin, I. I. Beterov, and I. I. Ryabtsev, Quant. Electron. 48, 886 (2018).

    Article  ADS  Google Scholar 

  19. B. K. Dutta and P. Panchadhyayee, Laser Phys. 28, 045201 (2018).

    Article  ADS  Google Scholar 

  20. F. E. Zimmer, J. Otterbach, R. G. Unanyan, B. W. Shore, and M. Fleischhauer, Phys. Rev. A 77, 063823 (2008).

    Article  ADS  Google Scholar 

  21. H. M. Kwak, T. Jeong, Y.-S. Lee, and H. S. Moon, Opt. Commun. 380, 168 (2016).

    Article  ADS  Google Scholar 

  22. S. K. Nath, V. Naik, A. Chakrabarti, and A. Ray, J. Opt. Soc. Am. B 36, 2610 (2019).

    Article  ADS  Google Scholar 

  23. J. Tang, Yu. Deng, and C. Lee, Phys. Rev. Appl. 12, 044065 (2019).

    Article  ADS  Google Scholar 

  24. S. Gasparinetti, J.-C. Besse, M. Pechal, R. D. Buijs, C. Eichler, H. J. Carmichael, and A. Wallraff, Phys. Rev. A 100, 033802 (2019).

    Article  ADS  Google Scholar 

  25. P. I. Khadzhi, Nonlinear Optical Processes in a System of Excitons and Biexcitons in Semiconductors (Shtiintsa, Chisinau, 1985), p. 209 [in Russian].

  26. P. I. Khadzhi, L. Yu. Nad’kin, and D. A. Markov, Phys. Solid State 60, 663 (2018).

    Article  ADS  Google Scholar 

  27. P. I. Khadzhi, O. V. Korovai, and L. Yu. Nad’kin, J. Exp. Theor. Phys. 128, 530 (2019).

    Article  ADS  Google Scholar 

  28. P. I. Khadzhi, O. V. Korovai, and L. Yu. Nad’kin, JETP Lett. 107, 595 (2018).

    Article  ADS  Google Scholar 

  29. L.Yu. Nad’kin, O. V. Korovai, and D. A. Markov, Opt. Spectrosc. 129, 309 (2021).

    Google Scholar 

  30. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961).

    MATH  Google Scholar 

  31. M. D. Yacoub and G. Fraidenraich, Math. Gazette 96 (536), 271 (2012).

    Article  Google Scholar 

  32. W. F. Carpenter, Math. Mag. 39, 28 (1966).

    Article  MathSciNet  Google Scholar 

  33. S. Arushanyan, A. Melikyan, and S. Saakyan, Quantum Electron. 41, 483 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Korovai.

Additional information

Translated by I. Nikitin

APPENDIX

APPENDIX

Expression (16) describes a fourth-degree curve of the form

$$a{{x}^{4}} + b{{x}^{3}} + c{{x}^{2}} + dx + e = 0$$

with real coefficients and a ≠ 0. The nature of the roots of expression (16) is determined by the sign of its discriminant

$$\begin{gathered} {\text{Discr}} = 256{{a}^{3}}{{e}^{3}} - 192{{a}^{2}}bd{{e}^{2}} - 128{{a}^{2}}{{c}^{2}}{{e}^{2}} \\ \, + 144{{a}^{2}}c{{d}^{2}}e - 27{{a}^{2}}{{d}^{4}} + 144a{{b}^{2}}c{{e}^{2}} - 6a{{b}^{2}}{{d}^{2}}e \\ \, - 80ab{{c}^{2}}de + 18abc{{d}^{2}} + 16a{{c}^{4}}e - 4a{{c}^{3}}{{d}^{2}} - 27{{b}^{4}}{{a}^{2}} \\ \, + 18{{b}^{3}}cde - 4{{b}^{3}}{{d}^{3}} - 4{{b}^{2}}{{c}^{3}}e + {{b}^{2}}{{c}^{2}}{{d}^{2}}. \\ \end{gathered} $$

Let us introduce auxiliary polynomials

$$P = 8ac - 3{{b}^{2}},$$
$$R = {{b}^{3}} + 8d{{a}^{2}} - 4abc,$$
$${{D}_{0}} = {{c}^{2}} - 3bd + 12ae,$$
$$D = 64{{a}^{3}}e - 16{{a}^{2}}{{c}^{2}} + 16a{{b}^{2}}c - 16{{a}^{2}}bd - 3{{b}^{4}}.$$

The following variants of roots are possible.

1. If Discr > 0, then all four roots of the equation are real, and, if P < 0 and D < 0, then all four roots are real and distinct.

2. If Discr = 0, then (and only then) the polynomial has a multiple root:

(a) if P < 0, D < 0, and D0 ≠ 0, then there exist a real double root and two real simple roots;

(b) if D0 = 0 and D ≠ 0, then there exist a triple root and a simple root, all real;

(c) if P < 0, then there exist two real double roots;

(d) if D0 = 0, then all four roots are equal to –b/4a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korovai, O.V. Polariton-Type Dispersion Laws for Four-Level Atoms with Nonequidistant Energy Spectrum That Interact with Three Laser Pulses. J. Exp. Theor. Phys. 133, 253–271 (2021). https://doi.org/10.1134/S1063776121080033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121080033

Navigation