Skip to main content
Log in

Cooperative Emission of Radiation as a Subordinated Random Process

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Collective emission of radiation by two-level impurities in a complex dielectric medium is represented as a subordinated random process controlled by an alpha-stable process with parameter α determined by characteristic radiation damping times. The differences from conventional superradiance are determined. Physical foundations used for introducing subordination can also be useful for other radiation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Function Mα(z) is nonnegative for z ≥ 0 and normalizable, \(\int_0^\infty {{{M}_{\alpha }}} \)(z)dz = 1, with Laplace transform \(\mathcal{L}\)(Mα(t, s)) = Eα, 1(–s). For 0 < α ≤ 1/2, it decreases monotonically, while for 1/2 < α < 1, it has a maximum at a certain point depending on α. In addition M1(z) = δ(z – 1), M1, 2(z) = \({{\pi }^{{ - 1/2}}}{\text{exp}}\left( { - \frac{{{{z}^{2}}}}{4}} \right),\) M1/3(z) = \({{3}^{{2/3}}}{\text{Ai}}\left( {\frac{z}{{{{3}^{1}}{\text{/}}3}}} \right),\) Ai(z) being the Airy function.

REFERENCES

  1. L. Pavesi and M. Ceschini, Phys. Rev. B 48, 17625 (1993).

    Article  ADS  Google Scholar 

  2. R. Rohlsberger, K. Schlage, T. Klein, and O. Leupold, Phys. Rev. Lett. 95, 097601 (2005).

    Article  ADS  Google Scholar 

  3. C. Rothe, S. I. Hintschich, and A. P. Monkman, Phys. Rev. Lett. 96, 163601 (2006).

    Article  ADS  Google Scholar 

  4. J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, J. Appl. Phys. 86, 6128 (1999).

    Article  ADS  Google Scholar 

  5. M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, Phys. Rev. A 53, 2799 (1996).

    Article  ADS  Google Scholar 

  6. P. Lodahl et al., Nature (London, U.K.) 430, 654 (2004).

    Article  ADS  Google Scholar 

  7. I. Thanopulos, V. Karanikolas, N. Iliopoulos, and E. Paspalakis, Phys. Rev. B 99, 195412 (2019).

    Article  ADS  Google Scholar 

  8. Jing-Nuo Wu, Chih-Hsien Huang, Szu-Cheng Cheng, and Wen-Feng Hsieh, Phys. Rev. A 81, 023827 (2010).

    Article  ADS  Google Scholar 

  9. Wei-Min Zhang, Ping-Yuan Lo, Heng-Na Xiong, Matisse Wei-Yuan Tu, and Franco Nori, Phys. Rev. Lett. 109, 170402 (2012).

    Article  ADS  Google Scholar 

  10. K. Sinha, P. Meystre, E. A. Goldschmidt, F. K. Fatemi, S. L. Rolston, and P. Solano, Phys. Rev. Lett. 124, 043603 (2020).

    Article  ADS  Google Scholar 

  11. R. Kohlrausch, Ann. Phys. (Leipzig) 12, 353 (1847).

    Article  ADS  Google Scholar 

  12. F. Alvarez, A. Alegra, and J. Colmenero, Phys. Rev. B 44, 7306 (1991).

    Article  ADS  Google Scholar 

  13. K. Funke, Solid State Ionics 4041, 200 (1990).

  14. E.-J. Donth, The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials (Springer, Berlin, 2001).

    Book  Google Scholar 

  15. A. Jedrzejowska et al., Phys. Rev. E 101, 010603(R) (2020).

  16. G. R. Kneller and M. Saouessi, J. Phys. A 53, 20LT01 (2020).

    Article  Google Scholar 

  17. Y. Luchko, Mathematics 8, 1561 (2020).

    Article  Google Scholar 

  18. D. Boyanovsky, D. Jasnow, X.-L. Wu, and R. C. Coalson, Phys. Rev. A 100, 043617 (2019).

    Article  ADS  Google Scholar 

  19. R. Tan, X. Xu, and D. Poletti, Phys. Rev. A 101, 023603 (2020).

    Article  ADS  Google Scholar 

  20. A. Kaminska and T. Srokowski, Phys. Rev. E 97, 062120 (2018).

    Article  ADS  Google Scholar 

  21. K. Fujimoto, R. Hamazaki, and M. Ueda, Phys. Rev. Lett. 120, 073002 (2018).

    Article  ADS  Google Scholar 

  22. R. Bouganne, M. B. Aguilera, A. Ghermaoui, J. Beugnon, and F. Gerbier, Nat. Phys. 16, 21 (2020).

    Article  Google Scholar 

  23. W. Berdanier, J. Marino, and E. Altman, Phys. Rev. Lett. 123, 230604 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  24. Md. Sariful Sheikh et al., Thin Solid Films 638, 277 (2017).

    Article  ADS  Google Scholar 

  25. R. Metzler and J. Klafter, J. Non-Cryst. Solids 305, 81 (2002).

    Article  ADS  Google Scholar 

  26. A. M. Basharov, J. Exp. Theor. Phys. 89, 249 (1999).

    Article  ADS  Google Scholar 

  27. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2000; 2004).

  28. P. Warszawski and H. M. Wiseman, J. Opt. B: Quantum Semiclass. Opt. 5, 1 (2003).

    Article  ADS  Google Scholar 

  29. P. Warszawski and H. M. Wiseman, J. Opt. B: Quantum Semiclass. Opt. 5, 15 (2003).

    Article  ADS  Google Scholar 

  30. A. M. Basharov, JETP Lett. 109, 676 (2019).

    Article  ADS  Google Scholar 

  31. G. L. Lippi, Atoms 9, 6 (2021).

    Article  ADS  Google Scholar 

  32. L. Lu and X. Yu, Laser Phys. Lett. 14, 115202 (2017).

    Article  ADS  Google Scholar 

  33. J. F. Gomez Aguilar, K. M. Saad, and D. Baleanu, Opt. Quant. Electron. 51, 316 (2019).

    Article  Google Scholar 

  34. A. N. Pisarchik and R. Jaimes-Reategui, Phys. Lett. A 374, 228 (2009).

    Article  ADS  Google Scholar 

  35. Y. O. Barmenkov et al., J. Appl. Phys. 106, 1 (2009).

    Article  Google Scholar 

  36. A. D. Guzman-Chavez, Y. O. Barmenkov, and A. V. Kir’yanov, Appl. Phys. Lett. 92, 1 (2008).

    Article  Google Scholar 

  37. C. H. Huang, J. N. Wu, Y. Y. Li, S. C. Cheng, and W. F. Hsieh, Phys. Rev. A 84, 013802 (2011).

    Article  ADS  Google Scholar 

  38. M. G. Benedict, A. M. Ermolaev, V. A. Malyshev, I. V. Sokolov, and E. D. Trifonov, Super-Radiance: Multiatomic Coherent Emission (Inst. Phys. Publ., Bristol, UK, 1996).

    Google Scholar 

  39. A. V. Andreev, V. I. Emel’yanov, and Yu. A. Il’inskii, Cooperative Phenomena in Optics: Superradiance. Bistability. Phase Transitions (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  40. Y. Luo et al., Phys. Rev. Lett. 122, 233901 (2019).

    Article  ADS  Google Scholar 

  41. P. Kirton and J. Keeling, Phys. Rev. Lett. 118, 123602 (2017).

    Article  ADS  Google Scholar 

  42. N. Shammah, N. Lambert, F. Nori, and S. de Liberato, Phys. Rev. A 96, 023863 (2017).

    Article  ADS  Google Scholar 

  43. P. Weiss, A. Cipris, R. Kaiser, I. M. Sokolov, and W. Guerin, Phys. Rev. A 103, 023702 (2021).

    Article  ADS  Google Scholar 

  44. I. V. Ryzhov, N. A. Vasil’ev, I. S. Kosova, M. D. Shtager, and V. A. Malyshev, J. Exp. Theor. Phys. 124, 683 (2017).

    Article  ADS  Google Scholar 

  45. D. Ya. Bairamdurdyev, R. F. Malikov, I. V. Ryzhov, and V. A. Malyshev, J. Exp. Theor. Phys. 131, 244 (2020)

    Article  ADS  Google Scholar 

  46. S. J. Masson et al., Phys. Rev. Lett. 125, 263601 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  47. A. M. Basharov, Phys. Rev. A 84, 013801 (2011).

    Article  ADS  Google Scholar 

  48. A. M. Basharov, J. Exp. Theor. Phys. 131, 853 (2020).

    Article  ADS  Google Scholar 

  49. A. M. Basharov and A. I. Trubilko, J. Exp. Theor. Phys. 128, 560 (2019).

    Article  ADS  Google Scholar 

  50. A. M. Basharov and A. I. Trubilko, J. Exp. Theor. Phys. 128, 366 (2019).

    Article  ADS  Google Scholar 

  51. A. S. Kholevo, Itogi Nauki Tekh., Ser.: Sovr. Probl. Mat. Fund. Napravl. 83, 3 (1991).

    MathSciNet  Google Scholar 

  52. A. M. Chebotarev, Lectures on Quantum Probability (Soc. Math. Mex., 2000).

  53. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford Univ. Press, New York, 2007).

    Book  MATH  Google Scholar 

  54. C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, Springer Series in Synergetics (Springer, Berlin, 2009).

    MATH  Google Scholar 

  55. A. A. Borovkov, Generalized Recovery Processes (Akad. Nauk, Moscow, 2020) [in Russian].

    Google Scholar 

  56. B. A. Sevast’yanov, Itogi Nauki Tekh., Ser.: Teor. Veroyatn. Mat. Stat. Teor. Kibernet., No. 11, 99 (1974).

  57. D. Cox, Renewal Theory (Methuen, London, 1962); W. L. Smith, J. R. Stat. Soc., Ser. B 20, 243 (1958).

    Google Scholar 

  58. J. Bertoin, Levy Processes (Cambridge Univ. Press, Cambridge, 1996).

    MATH  Google Scholar 

  59. J. Bertoin, Lect. Notes Math. 1717, 1 (1999).

    Article  ADS  Google Scholar 

  60. M. Winkel, Ann. Probab. 30, 382 (2002).

    Article  MathSciNet  Google Scholar 

  61. A. A. Stanislavskii, Theor. Math. Phys. 138, 418 (2004).

    Article  MathSciNet  Google Scholar 

  62. A. A. Stanislavsky, Phys. Rev. E 70, 051103 (2004).

    Article  ADS  Google Scholar 

  63. A. A. Stanislavsky and A. Weron, Phys. Rev. E 101, 052119 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  64. R. Khalil, M. al Horani, A. Yousef, and M. Sababheh, J. Comp. Appl. Math. 264, 65 (2014).

    Article  Google Scholar 

  65. A. M. Basharov, J. Exp. Theor. Phys. 126, 310 (2018).

    Article  ADS  Google Scholar 

  66. A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer Academic, Dordrecht, 1999).

    Book  MATH  Google Scholar 

  67. K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1996).

    Book  MATH  Google Scholar 

  68. A. M. Basharov, J. Exp. Theor. Phys. 94, 1070 (2002).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported in part by the Russian Foundation for Basic Research (project no. 19-02-00234a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Basharov or A. I. Trubilko.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basharov, A.M., Trubilko, A.I. Cooperative Emission of Radiation as a Subordinated Random Process. J. Exp. Theor. Phys. 133, 143–153 (2021). https://doi.org/10.1134/S106377612108001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612108001X

Navigation