Skip to main content
Log in

Transport Equation for Subdiffusion of Mixed Origin

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The transport equation is proposed for the model, which is a combination of the random barrier model and the multiple trapping model. Negative correlations due to barriers are simulated by adding the source and sink terms to the equation. For processes preserving the probability, the proposed equation is equivalent to the equation that has been derived earlier. However, for processes with probability flows through boundaries, the results are basically different. In particular, this transport equation gives different values of the first passage time for stationary and nonstationary subdiffusion. In the case of stationary subdiffusion, it reproduces the result of the model of fractional Brownian motion, while for nonstationary subdiffusion, it reproduces the result of continuous time random walk model. The thermodynamic consistency of the equation is demonstrated for diffusion in a harmonic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Metzler and J. Klafter, J. Phys. A 37, R61 (2004).

    Article  Google Scholar 

  2. Anomalous Transport: Foundations and Applications, Ed. by R. Klages, G. Radons, and I. M. Sokolov (Wiley-VCH, Weinheim, 2007).

    MATH  Google Scholar 

  3. S. Havlin and D. Ben-Avraham, Adv. Phys. 51, 187 (2002).

    Article  ADS  Google Scholar 

  4. I. M. Sokolov, Soft Matter 8, 9043 (2012).

    Article  ADS  Google Scholar 

  5. F. Höfling and T. Franosch, Rep. Prog. Phys. 76, 046602 (2013).

    Article  ADS  Google Scholar 

  6. J. W. Haus and K. W. Kehr, Phys. Rep. 150, 264 (1987).

    Article  ADS  Google Scholar 

  7. V. M. Kenkre, Z. Kalay, and P. E. Parris, Phys. Rev. E 79, 011114 (2009).

    Article  ADS  Google Scholar 

  8. J. C. Dyre, J. Non-Cryst. Sol. 135, 219 (1991).

    Google Scholar 

  9. M. J. Saxton, Biophys. J. 66, 394 (1994).

    Article  ADS  Google Scholar 

  10. B. J. Sung and A. Yethiraj, Phys. Rev. Lett. 96, 228103 (2006).

    Article  ADS  Google Scholar 

  11. Y. Meroz, I. M. Sokolov, and J. Klafter, Phys. Rev. E 81, 010101 (2010).

    Article  ADS  Google Scholar 

  12. R. Kupferman, J. Stat. Phys. 114, 291 (2004).

    Article  ADS  Google Scholar 

  13. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 26, 115 (1940).

    Google Scholar 

  14. B. B. Mandelbrot and J. W. van Ness, SIAM Rev. 10, 422 (1968).

    Article  ADS  MathSciNet  Google Scholar 

  15. P. W. Shmidlin, Phys. Rev. B 16, 2362 (1977).

    Article  ADS  Google Scholar 

  16. J. Noolandi, Phys. Rev. B 16, 4474 (1977).

    Article  ADS  Google Scholar 

  17. E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).

    Article  ADS  Google Scholar 

  18. M. V. Chubynsky and G. W. Slater, Phys. Rev. Lett. 113, 098302 (2014).

    Article  ADS  Google Scholar 

  19. D. Mazza, A. Abernathy, N. Golob, T. Morisaki, and J. G. McNally, Nucl. Acids Res. 40, e119 (2012).

    Article  Google Scholar 

  20. T. J. Stasevich, F. Mueller, A. Michelman-Ribeiro, T. Rosales, J. R. Knutson, and J. G. McNally, Biophys. J. 99, 3093 (2010).

    Article  ADS  Google Scholar 

  21. A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, Proc. Natl. Acad. Sci. U. S. A. 108, 6438 (2011).

    Article  ADS  Google Scholar 

  22. J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, Phys. Rev. Lett. 106, 048103 (2011).

    Article  ADS  Google Scholar 

  23. S. M. A. Tabei, S. Burov, H. Y. Kim, A. Kuznetsov, T. Huynh, J. Jureller, L. H. Philipson, A. R. Dinner, and N. F. Scherer, Proc. Natl. Acad. Sci. U. S. A. 110, 49114916 (2013).

    Article  Google Scholar 

  24. T. Miyaguchi and T. Akimoto, Phys. Rev. E 91, 010102(R) (2015).

  25. Y. Golan and E. Sherman, Nat. Commun. 8, 15851 (2017).

    Article  ADS  Google Scholar 

  26. T. Furnival, R. K. Leary, E. C. Tyo, S. Vajda, Q. M. Ramasse, J. M. Thomas, P. D. Bristowe, and P. A. Midgleya, Chem. Phys. Lett. 683, 370 (2017).

    Article  ADS  Google Scholar 

  27. W. Schirmacher, Solid State Commun. 39, 893 (1981).

    Article  ADS  Google Scholar 

  28. B. Movaghar, M. Grünewald, B. Pohlmann, D. Würtz, and W. Schirmacher, J. Stat. Phys. 30, 315 (1983).

    Article  ADS  Google Scholar 

  29. K. Godzik and W. Schirmacher, J. Phys. 42, 127 (1981).

    Google Scholar 

  30. V. P. Shkilev, J. Exp. Theor. Phys. 114, 830 (2012).

    Article  ADS  Google Scholar 

  31. V. P. Shkilev, J. Exp. Theor. Phys. 115, 164 (2012).

    Article  ADS  Google Scholar 

  32. V. P. Shkilev, Phys. Rev. E 97, 012102 (2018).

    Article  ADS  Google Scholar 

  33. V. P. Shkilev, Phys. Rev. E 98, 032140 (2018).

    Article  ADS  Google Scholar 

  34. Y. Meroz, I. M. Sokolov, and J. Klafter, Phys. Rev. Lett. 107, 260601 (2011).

    Article  ADS  Google Scholar 

  35. E. Bolthausen and U. Schmock, Ann. Probab. 25, 531 (1997).

    MathSciNet  Google Scholar 

  36. H. G. Othmer and A. Stevens, SIAM J. Appl. Math. 57, 1044 (1997).

    Article  MathSciNet  Google Scholar 

  37. D. Boyer and C. Solis-Salas, Phys. Rev. Lett. 112, 240601 (2014).

    Article  ADS  Google Scholar 

  38. D. Boyer and J. C. Romo-Cruz, Phys. Rev. E 90, 042136 (2014).

    Article  ADS  Google Scholar 

  39. D. Boyer, M. R. Evans, and S. N. Majumdar, J. Stat. Mech. 2017, 023208 (2017).

    Article  Google Scholar 

  40. M. R. Evans and S. N. Majumdar, Phys. Rev. Lett. 106, 160601 (2011).

    Article  ADS  Google Scholar 

  41. J. H. Jeon, A. V. Chechkin, and R. Metzler, in First-Passage Phenomena and Their Applications, Ed. by R. Metzler, S. Redner, and G. Oshanin (World Scientific, Singapore, 2014), p. 175.

    Google Scholar 

  42. A. Pal and V. V. Prasad, Phys. Rev. E 99, 032123 (2019).

    Article  ADS  Google Scholar 

  43. D. O’Malley, J. H. Cushman, and G. Johnson, J. Stat. Mech.: Theory Exp. 2011, L01001 (2011).

  44. S. Song, S. J. Park, M. Kim, J. S. Kim, B. J. Sung, S. Lee, J.-H. Kim, and J. Sung, Proc. Natl. Acad. Sci. U. S. A. 116, 12733 (2019).

    Article  ADS  Google Scholar 

  45. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 2007).

    MATH  Google Scholar 

  46. A. V. Chechkin, F. Seno, R. Metzler, and I. M. Sokolov, Phys. Rev. X 7, 021002 (2017).

    Google Scholar 

  47. N. Destainville, A. Sauliere, and L. Salome, Biophys. J. 95, 3117 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Shkilev.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkilev, V.P. Transport Equation for Subdiffusion of Mixed Origin. J. Exp. Theor. Phys. 133, 88–97 (2021). https://doi.org/10.1134/S1063776121070098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121070098

Navigation