Skip to main content
Log in

Effect of Pressure on the Interlayer Charge Transport and the Electronic Structure of the Metallic Layers in the Organic Two-Dimensional Bilayer Metal (BETS)4CoBr4(DCB)

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The resistance and magnetoresistance of the organic (BETS)4CoBr4(DCB) metal are studied at atmospheric pressure and a hydrostatic pressure of up to 10 kbar. The interlayer resistance at atmospheric pressure increases with decreasing temperature to T ≈ 25 K and then decreases as the temperature decreases further. The behavior of magnetoresistance exhibits incoherent transfer over the entire temperature range. The low-temperature metal-like behavior is related to transfer through resonance impurities. Pressure weakens the nonmetallic increase in the resistance and the transfer remains incoherent. The Fourier spectrum of the Shubnikov–de Haas oscillations at atmospheric pressure contains two fundamental frequencies, namely, Fα ≈ 860 T and Fβ ≈ 4400 T, with cyclotron masses mα ≈ 1.0me and mβ ≈ 1.9me. The applied pressure increases the fundamental frequencies by a few percent, which is most likely to be associated with the pressure-induced decrease in the unit cell size. The cyclotron mass under pressure remains almost the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. Saito and Y. Yoshida, Bull. Chem. Soc. Jpn. 80, 1 (2007).

    Article  Google Scholar 

  2. M. V. Kartsovnik, Chem. Rev. 104, 5737 (2004).

    Article  Google Scholar 

  3. M. V. Kartsovnik, in The Physics of Organic Superconductors and Conductors, Ed. by A. Lebed (Springer, Berlin, 2008), p. 185.

    Google Scholar 

  4. R. Lyubovskaya, E. Zhilyaeva, A. G. Shilov, et al., Eur. J. Inorg. Chem. 24, 3820 (2014).

    Article  Google Scholar 

  5. T. G. Prokhorova and E. B. Yagubskii, Russ. Chem. Rev. 86, 164 (2017).

    Article  ADS  Google Scholar 

  6. R. B. Lyubovskii, S. I. Pesotskii, G. V. Shilov, E. I. Zhilyaeva, A. M. Flakina, and R. N. Lyubovskaya, JETP Lett. 98, 181 (2013).

    Article  ADS  Google Scholar 

  7. A. Audouard, J.-Y. Fortin, D. Vignolles, et al., Synth. Met. 226, 171 (2017).

    Article  Google Scholar 

  8. R. H. McKenzie and P. Moses, Phys. Rev. Lett. 81, 4492 (1998).

    Article  ADS  Google Scholar 

  9. P. Moses and R. H. McKenzie, Phys. Rev. B 60, 7998 (1999).

    Article  ADS  Google Scholar 

  10. D. B. Gutman and D. L. Maslov, Phys. Rev. B 77, 035115 (2008).

    Article  ADS  Google Scholar 

  11. P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011).

    Article  ADS  Google Scholar 

  12. P. D. Grigoriev, M. V. Kartsovnik, and W. Biberacher, Phys. Rev. B 86, 165125 (2012).

    Article  ADS  Google Scholar 

  13. P. D. Grigoriev, Phys. Rev. B 88, 054415 (2013).

    Article  ADS  Google Scholar 

  14. M. V. Kartsovnik, D. Andres, S. V. Simonov, et al., Phys. Rev. Lett. 96, 166601 (2006).

    Article  ADS  Google Scholar 

  15. R. B. Lyubovskii, S. I. Pesotskii, O. A. Bogdanova, E. I. Zhilyaeva, A. M. Flakina, and R. N. Lyubovskaya, Russ. Chem. Bull. 60, 1363 (2011).

    Article  Google Scholar 

  16. M. V. Kartsovnik, P. D. Grigoriev, W. Biberacher, and N. D. Kushch, Phys. Rev. B 79, 165120 (2009).

    Article  ADS  Google Scholar 

  17. L. M. Falicov and H. Stachowiak, Phys. Rev. 147, 505 (1966).

    Article  ADS  Google Scholar 

  18. R. W. Stark and C. B. Friedberg, Phys. Rev. Lett. 26, 556 (1971).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (project no. AAAA-A19-119092390079-8), and V.N.Z acknowledges the support of the Russian Foundation for Basic Research (project no. 21-52-12027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Pesotskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubovskii, R.B., Pesotskii, S.I., Zverev, V.N. et al. Effect of Pressure on the Interlayer Charge Transport and the Electronic Structure of the Metallic Layers in the Organic Two-Dimensional Bilayer Metal (BETS)4CoBr4(DCB). J. Exp. Theor. Phys. 133, 104–108 (2021). https://doi.org/10.1134/S1063776121070049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121070049

Navigation