Abstract
The ionization of a helium atom and helium like atoms in a linearly polarized low-frequency laser field is investigated by the Landau–Dykhne transition theory. The tunneling rate’s formula for the trigonometric pulse envelope linearly polarized laser field is obtained, by taking into account electrons correlation in the ground state and the Coulomb correction. The obtained curve is compared with the Ammosov–Delone–Krainov theory. The curve displays a good flow but overestimates the Ammosov–Delone–Krainov one. Additionally, we analyzed different wavelengths, as well as the influence of the corrected ionization potential by including the ponderomotive shift. Our analysis shows that the inclusion of the additional terms in the ionization potential decreases rate, and that the properties of the beam shape has an effect on the ionization rate. We also find that the ionization rate is very sensitive to the value of laser wavelength (frequency) and the parabolic coordinate.
This is a preview of subscription content, access via your institution.



REFERENCES
P. Xia, C. Kim, F. Lu, et al., Opt. Express 26, 29393 (2018).
N. J. Dawson and M. Kounta, J. Nonlin. Opt. Phys. Mater. 28, 1950033 (2019).
A. V. Andreev, O. A. Shoutova, and V. A. Makarov, in Proceedings of the ICONO 2005, Conference on Nonlinear Optical Phenomena, Proc. SPIE 6259, 625901 (2006).
Y. H. Lai, J. Xu, U. B. Szafruga, et al., Phys. Rev. A 96, 063417 (2017).
L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1964).
A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov. Phys. JETP 24, 207 (1967).
M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys. JETP 64, 1191 (1986).
H. Ni, U. Saalmann, and J. M. Rost, Phys. Rev. A 97, 013426 (2018).
R. Wang, Q. Zhang, D. Li, et al., Opt. Express 27, 647 (2019).
Y. Z. Fu, S. F. Zhao, and X. X. Zhou, Chin. Phys. B 21, 113101 (2012).
N. Abro, K.Wang, X. Zhu, B. Li, and C. Jin, Phys. Rev. A 98, 023411 (2018).
R. Sun, X. Lai, W. Quan, et al., Phys. Rev. A 98, 053418 (2018).
S. Luo, M. Li, W. Xie, et al., Phys. Rev. A 99, 053422 (2019).
A. M. Dykhne, Sov. Phys. JETP 14, 1 (1962).
G. L. Yudin and M. Y. Ivanov, Phys. Rev. A 64, 013409 (2001).
L. B. Madsen, O. I. Tolstikhin, and T. Morishita, Phys. Rev. A 85, 053404 (2012).
I. Barth and O. Smirnova, Phys. Rev. A 87, 065401 (2013).
M. Li, M. M. Liu, J. W. Geng, et al., Phys. Rev. A 95, 053425 (2017).
K. Liu, S. Luo, M. Li, et al., Phys. Rev. Lett. 122, 053202 (2019).
J. R. Oppenheimer, Phys. Rev. 31, 66 (1928).
L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Pergamon, New York, 1977).
D. I. Bondar, W. K. Liu, et al., Phys. Rev. A 79, 065401 (2009).
C. D. Lin, C. Jin, A. T. Le, and H. Wei, Atto Second and Strong-Field Physics: Principles and Applications (Cambridge Univ. Press, Cambridge, 2018), p. 86.
I. Barth and M. Lein, J. Phys. B 47, 204016 (2014).
M. Harooni, High Power Laser Systems (Books on Demand, 2018).
V. P. Krainov, J. Opt. Soc. Am. B 14, 425 (1997).
V. P. Krainov, J. Phys. B 36, L169 (2003).
M. Inguscio and L. Fallani, Atomic Physics: Precise Measurements and Ultracold Matter (Oxford Univ. Press, Oxford, 2013).
M. Petersilka and E. K. U. Gross, Laser Phys. 9, 1 (1999).
Z. Chen, L. Zhang, Y. Wang, et al., Phys. Rev. A 99, 033401 (2019).
E. A. Volkova, A. M. Popov, and O. V. Tikhonova, J. Exp. Theor. Phys. 113, 394 (2011).
R. Wiehle, Doctoral Dissertation (2005).
B. Walker, B. Sheehy, L. F. Di Mauro, et al., Phys. Rev. Lett. 73, 1227 (1994).
K. Nagaya, K. Mishima, M. Hayashi, and S. H. Lin, J. Chem. Phys. 124, 144303 (2006).
Funding
This work was supported by the Serbian Ministry of Education, Science and Technological Development (Agreement no. 451-03-68/2020-14/200122) and COST Action CA18222 “Attosecond Chemistry.”
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Petrović, V.M., Delibaśić, H.S. & Petrović, I.D. Strong-Field Tunneling Ionization Rate Based on Landau–Dykhne Transition Theory. J. Exp. Theor. Phys. 133, 1–6 (2021). https://doi.org/10.1134/S1063776121060078
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063776121060078