Skip to main content

Strong-Field Tunneling Ionization Rate Based on Landau–Dykhne Transition Theory

Abstract

The ionization of a helium atom and helium like atoms in a linearly polarized low-frequency laser field is investigated by the Landau–Dykhne transition theory. The tunneling rate’s formula for the trigonometric pulse envelope linearly polarized laser field is obtained, by taking into account electrons correlation in the ground state and the Coulomb correction. The obtained curve is compared with the Ammosov–Delone–Krainov theory. The curve displays a good flow but overestimates the Ammosov–Delone–Krainov one. Additionally, we analyzed different wavelengths, as well as the influence of the corrected ionization potential by including the ponderomotive shift. Our analysis shows that the inclusion of the additional terms in the ionization potential decreases rate, and that the properties of the beam shape has an effect on the ionization rate. We also find that the ionization rate is very sensitive to the value of laser wavelength (frequency) and the parabolic coordinate.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. P. Xia, C. Kim, F. Lu, et al., Opt. Express 26, 29393 (2018).

    Article  ADS  Google Scholar 

  2. N. J. Dawson and M. Kounta, J. Nonlin. Opt. Phys. Mater. 28, 1950033 (2019).

    Article  Google Scholar 

  3. A. V. Andreev, O. A. Shoutova, and V. A. Makarov, in Proceedings of the ICONO 2005, Conference on Nonlinear Optical Phenomena, Proc. SPIE 6259, 625901 (2006).

    Article  Google Scholar 

  4. Y. H. Lai, J. Xu, U. B. Szafruga, et al., Phys. Rev. A 96, 063417 (2017).

    Article  ADS  Google Scholar 

  5. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1964).

    Google Scholar 

  6. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov. Phys. JETP 24, 207 (1967).

    ADS  Google Scholar 

  7. M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys. JETP 64, 1191 (1986).

    Google Scholar 

  8. H. Ni, U. Saalmann, and J. M. Rost, Phys. Rev. A 97, 013426 (2018).

    Article  ADS  Google Scholar 

  9. R. Wang, Q. Zhang, D. Li, et al., Opt. Express 27, 647 (2019).

    Google Scholar 

  10. Y. Z. Fu, S. F. Zhao, and X. X. Zhou, Chin. Phys. B 21, 113101 (2012).

    Article  ADS  Google Scholar 

  11. N. Abro, K.Wang, X. Zhu, B. Li, and C. Jin, Phys. Rev. A 98, 023411 (2018).

    Article  ADS  Google Scholar 

  12. R. Sun, X. Lai, W. Quan, et al., Phys. Rev. A 98, 053418 (2018).

    Article  ADS  Google Scholar 

  13. S. Luo, M. Li, W. Xie, et al., Phys. Rev. A 99, 053422 (2019).

    Article  ADS  Google Scholar 

  14. A. M. Dykhne, Sov. Phys. JETP 14, 1 (1962).

    MathSciNet  Google Scholar 

  15. G. L. Yudin and M. Y. Ivanov, Phys. Rev. A 64, 013409 (2001).

    Article  ADS  Google Scholar 

  16. L. B. Madsen, O. I. Tolstikhin, and T. Morishita, Phys. Rev. A 85, 053404 (2012).

    Article  ADS  Google Scholar 

  17. I. Barth and O. Smirnova, Phys. Rev. A 87, 065401 (2013).

    Article  ADS  Google Scholar 

  18. M. Li, M. M. Liu, J. W. Geng, et al., Phys. Rev. A 95, 053425 (2017).

    Article  ADS  Google Scholar 

  19. K. Liu, S. Luo, M. Li, et al., Phys. Rev. Lett. 122, 053202 (2019).

    Article  ADS  Google Scholar 

  20. J. R. Oppenheimer, Phys. Rev. 31, 66 (1928).

    Article  ADS  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Pergamon, New York, 1977).

  22. D. I. Bondar, W. K. Liu, et al., Phys. Rev. A 79, 065401 (2009).

    Article  ADS  Google Scholar 

  23. C. D. Lin, C. Jin, A. T. Le, and H. Wei, Atto Second and Strong-Field Physics: Principles and Applications (Cambridge Univ. Press, Cambridge, 2018), p. 86.

    Book  Google Scholar 

  24. I. Barth and M. Lein, J. Phys. B 47, 204016 (2014).

    Article  ADS  Google Scholar 

  25. M. Harooni, High Power Laser Systems (Books on Demand, 2018).

    Book  Google Scholar 

  26. V. P. Krainov, J. Opt. Soc. Am. B 14, 425 (1997).

    Article  ADS  Google Scholar 

  27. V. P. Krainov, J. Phys. B 36, L169 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Inguscio and L. Fallani, Atomic Physics: Precise Measurements and Ultracold Matter (Oxford Univ. Press, Oxford, 2013).

    Book  Google Scholar 

  29. M. Petersilka and E. K. U. Gross, Laser Phys. 9, 1 (1999).

    Google Scholar 

  30. Z. Chen, L. Zhang, Y. Wang, et al., Phys. Rev. A 99, 033401 (2019).

    Article  ADS  Google Scholar 

  31. E. A. Volkova, A. M. Popov, and O. V. Tikhonova, J. Exp. Theor. Phys. 113, 394 (2011).

    Article  ADS  Google Scholar 

  32. R. Wiehle, Doctoral Dissertation (2005).

  33. B. Walker, B. Sheehy, L. F. Di Mauro, et al., Phys. Rev. Lett. 73, 1227 (1994).

    Article  ADS  Google Scholar 

  34. K. Nagaya, K. Mishima, M. Hayashi, and S. H. Lin, J. Chem. Phys. 124, 144303 (2006).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Serbian Ministry of Education, Science and Technological Development (Agreement no. 451-03-68/2020-14/200122) and COST Action CA18222 “Attosecond Chemistry.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Delibaśić.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, V.M., Delibaśić, H.S. & Petrović, I.D. Strong-Field Tunneling Ionization Rate Based on Landau–Dykhne Transition Theory. J. Exp. Theor. Phys. 133, 1–6 (2021). https://doi.org/10.1134/S1063776121060078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121060078