Skip to main content
Log in

Modification of the Electronic Structure of Quasi-Free-Standing Graphene by the Adsorption and Intercalation of Mn Atoms

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The influence of manganese atom intercalation on the electronic structure of graphene grown on Au/Co(0001)/W(110) and SiC(0001) substrates is experimentally studied by angle-resolved photoelectron spectroscopy. Dispersion dependences of the graphene π states at the \(\bar {K}\) point of the Brillouin zone are obtained for both systems using ultraviolet photoelectron spectroscopy, and these dependences exhibit shifts of the Dirac cone induced by manganese intercalation followed by annealing. The structure of the near-surface layers of the systems is investigated by X-ray photoelectron spectroscopy. An analysis of the core level lines indicates the possibility of formation of a thin Mn2Au layer on the graphene–Mn–Au interface and a quasi-two-dimensional Mn layer under graphene on the SiC substrate. A comprehensive Raman spectroscopy study of graphene on SiC demonstrates that the buffer layer remains coupled to the substrate and does not transform into an additional graphene layer after the Mn intercalation of this system. After intercalation, the amount of lattice defects in graphene increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  2. A. Bostwick, T. Ohta, T. Seyller, et al., Nat. Phys. 3, 36 (2007).

    Article  Google Scholar 

  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature (London, U.K.) 438, 197 (2005).

    Article  ADS  Google Scholar 

  4. D. Wickramaratne, L. Weston, and C. G. van de Walle, J. Phys. Chem. C 122, 25524 (2018).

    Article  Google Scholar 

  5. W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Nat. Nanotechnol. 9, 794 (2014).

    Article  ADS  Google Scholar 

  6. A. A. Rybkina, A. G. Rybkin, I. I. Klimovskikh, et al., Nanotechnology 31, 16520 (2020).

    Article  Google Scholar 

  7. O. Rader, A. Varykhalov, J. Sánchez-Barriga, et al., Phys. Rev. Lett. 102, 057602 (2009).

    Article  ADS  Google Scholar 

  8. A. M. Shikin, V. K. Adamchuk, and K. H. Rieder, Phys. Solid State 51, 2390 (2009).

    Article  ADS  Google Scholar 

  9. A. Varykhalov, J. Sanchez-Barriga, A. Shikin, et al., Phys. Rev. Lett. 101, 157601 (2008).

    Article  ADS  Google Scholar 

  10. M. Weser, Y. Rehder, K. Horn, et al., Phys. Lett. 96, 012504 (2010).

    Google Scholar 

  11. A. G. Rybkin, A. A. Rybkina, M. M. Otrokov, et al., Nano Lett. 18, 1564 (2018).

    Article  ADS  Google Scholar 

  12. D. Usachov, A. V. Fedorov, M. M. Otrokov, et al., Nano Lett. 15, 2396 (2015).

    Article  ADS  Google Scholar 

  13. J. Drnes, S. Vlaic, I. Carlomagno, et al., Carbon 94, 554 (2015).

    Article  Google Scholar 

  14. R. Decker, J. Brede, N. Atodiresei, et al., Phys. Rev. B 87, 041403 (2013).

    Article  ADS  Google Scholar 

  15. A. Varykhalov, J. Sánchez-Barriga, D. Marchenko, et al., Nat. Commun. 6, 1 (2015).

    Article  Google Scholar 

  16. T. Gao, Y. Gao, C. Chang, et al., ACS Nano 6, 6562 (2012).

    Article  Google Scholar 

  17. Y. Zhang, Y. Zhang, D. Ma, et al., Nano Res. 6, 887 (2013).

    Article  Google Scholar 

  18. I. I. Klimovskikh, M. Krivenkov, A. Varykhalov, et al., Carbon 147, 182 (2019).

    Article  Google Scholar 

  19. I. S. Sokolov, D. V. Averyanov, O. E. Parfenov, et al., Mater. Horiz. 7, 1372 (2020).

    Article  Google Scholar 

  20. M. Kim, M. C. Tringides, M. T. Hershberger, et al., Carbon 123, 93 (2017).

    Article  Google Scholar 

  21. D. A. Estyunin, I. I. Klimovskikh, V. Yu. Voroshnin, D. M. Sostina, L. Petaccia, G. Di Santo, and A. M. Shikin, J. Exp. Theor. Phys. 125, 762 (2017).

    Article  ADS  Google Scholar 

  22. I. I. Klimovskikh, M. M. Otrokov, V. Y. Voroshnin, et al., ACS Nano 11, 368 (2017).

    Article  Google Scholar 

  23. A. Shikin, A. Rybkin, D. Marchenko, et al., New J. Phys. 15, 013016 (2013).

    Article  ADS  Google Scholar 

  24. M. Gibertini, M. Koperski, A. F. Morpurgo, et al., Nat. Nanotechnol. 14, 408 (2019).

    Article  ADS  Google Scholar 

  25. C. Gong and Z. Xiang, Science (Washington, DC, U. S.) 363, 6428 (2019).

    Google Scholar 

  26. N. Samarth, Nature (London, U.K.) 546, 216 (2017).

    Article  ADS  Google Scholar 

  27. P. Huang, P. Zhang, S. Xu, et al., Nanoscale 12, 2309 (2020).

    Article  Google Scholar 

  28. B. Huang, G. Clark, E. Navarro-Moratalla, et al., Nature (London, U.K.) 546, 270 (2017).

    Article  ADS  Google Scholar 

  29. M. A. McGuire, H. Dixit, V. R. Cooper, et al., Chem. Mater. 27, 612 (2015).

    Article  Google Scholar 

  30. C. Tang, Z. Zhang, S. Lai, et al., arXiv: 1910.10411 (2019).

  31. O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010).

    Article  ADS  Google Scholar 

  32. O. V. Yazyev and M. I. Katsnelson, Phys. Rev. Lett. 100, 047209 (2008).

    Article  ADS  Google Scholar 

  33. L. Y. Gan, Q. Zhang, C. S. Guo, et al., J. Phys. Chem. C 120, 2119 (2016).

    Article  Google Scholar 

  34. J. Zhang, B. Zhao, T. Zhou, et al., Phys. Rev. B 97, 085401 (2018).

    Article  ADS  Google Scholar 

  35. E. Voloshina, Q. Guo, B. Paulus, et al., J. Phys. Chem. C 123 (2019).

  36. A. A. Lebedev, V. Yu. Davydov, D. Yu. Usachov, et al., Semiconductors 52, 1882 (2018).

    Article  ADS  Google Scholar 

  37. L. Petaccia, P. Vilmercati, S. Gorovikov, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 606, 780 (2009).

    Google Scholar 

  38. F. J. García de Abajo, M. A. van Hove, and C. S. Fadley, Phys. Rev. B 63, 075404 (2001).

    Article  ADS  Google Scholar 

  39. M. H. Oliveira, Jr., T. Schumann, F. Fromm, et al., Carbon 52, 83 (2013).

    Article  Google Scholar 

  40. E. V. Shalaeva and M. V. Kuznetsov, J. Struct. Chem. 44, 465 (2003).

    Article  Google Scholar 

  41. M. L. Xu, J. J. Barton, and M. A. van Hove, Phys. Rev. B 39, 8275 (1989).

    Article  ADS  Google Scholar 

  42. X. Li, M. Xin, S. Guo, et al., Electrochim. Acta 253, 302 (2017).

    Article  Google Scholar 

  43. A. Sumboja, C. Y. Foo, X. Wang, et al., Adv. Mater. 25, 2809 (2013).

    Article  Google Scholar 

  44. D. Mukherjee, B. G. Rao, and B. M. Reddy, Appl. Catal. B 197, 105 (2016).

    Article  Google Scholar 

  45. S. Y. Zhou, D. A. Siegel, A. V. Fedorov, et al., Phys. E (Amsterdam, Neth.) 40, 2642 (2008).

  46. T. Wang, J.-R. Huntzinger, M. Bayle, et al., Carbon 163, 224 (2020).

    Article  Google Scholar 

  47. A. C. Ferrari, Solid State Commun. 143, 47 (2007).

    Article  ADS  Google Scholar 

  48. M. V. Gomoyunova, G. S. Grebenyuk, V. Yu. Davydov, I. A. Ermakov, I. A. Eliseyev, A. A. Lebedev, S. P. Lebedev, E. Yu. Lobanova, A. N. Smirnov, D. A. Smirnov, and I. I. Pronin, Phys. Solid State 60, 1439 (2018).

    Article  ADS  Google Scholar 

  49. G. S. Grebenyuk, I. A. Eliseev, S. P. Lebedev, E. Yu. Lobanova, D. A. Smirnov, V. Yu. Davydov, A. A. Lebedev, and I. I. Pronin, Phys. Solid State 62, 519 (2020).

    Article  ADS  Google Scholar 

  50. L. G. Cançado, M. G. da Silva, E. H. M. Ferreira, et al., 2D Mater. 4, 025039 (2017).

  51. L. G. Cançado, K. Takai, T. Enoki, et al., Appl. Phys. Lett. 88, 163106 (2006).

    Article  ADS  Google Scholar 

  52. A. Eckmann, A. Felten, I. Verzhbitskiy, et al., Phys. Rev. B 88, 035426 (2013).

    Article  ADS  Google Scholar 

  53. J. E. Lee, G. Ahn, J. Shim, et al., Nat. Commun. 3, 1024 (2012).

    Article  ADS  Google Scholar 

  54. I. A. Eliseyev, V. Yu. Davydov, A. N. Smirnov, M. O. Nestoklon, P. A. Dementev, S. P. Lebedev, A. A. Lebedev, A. V. Zubov, S. Mathew, J. Pezoldt, K. A. Bokai, and D. Yu Usachov, Semiconductors 53, 1904 (2019).

    Article  ADS  Google Scholar 

  55. G. Froehlicher and S. Berciaud, Phys. Rev. B 91, 205413 (2015).

    Article  ADS  Google Scholar 

  56. V. Panchal, C. E. Giusca, A. Lartsev, et al., 2D Mater. 3, 015006 (2016).

Download references

ACKNOWLEDGMENTS

We acknowledge Elettra Sincrotrone Trieste for providing access to its synchrotron radiation facilities and we thank L. Sancin for technical support. We are also grateful to P. Landois and her colleagues (Université Montpellier, France) for the spectra of the buffer layer. Some investigations were carried out in the Physical Methods for Surface Investigation Centre of the St. Petersburg State University Research Park.

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation, project no. 075-15-2020-797 (13.1902.21.0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gogina.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogina, A.A., Rybkin, A.G., Shikin, A.M. et al. Modification of the Electronic Structure of Quasi-Free-Standing Graphene by the Adsorption and Intercalation of Mn Atoms. J. Exp. Theor. Phys. 132, 906–916 (2021). https://doi.org/10.1134/S1063776121050101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121050101

Navigation