Skip to main content
Log in

Subradiance of Cold and Dilute Atomic Ensembles Excited by Resonant Pulsed Radiation

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The fluorescence dynamics of optically dense but dilute atomic ensembles cooled to sub-Doppler temperatures and excited by resonant pulsed radiation is studied. Apart from total radiation intensity, the temporal variations of the spectral composition of fluorescence and its polarization, as well as the variation of the spatial distribution of excitation in the atomic ensemble, are analyzed. Based on this analysis, it is shown that the role of radiation trapping becomes smaller with time, and subradiance quantum states formed as a result of the resonant dipole–dipole interatomic interaction become the main factor determining the slow atomic excitation decay. The dependence of the subradiance form on the ensemble size is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. V. Hau, Nat. Photon. 2, 451 (2008).

    Article  ADS  Google Scholar 

  2. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2010).

    MATH  Google Scholar 

  3. B. J. Bloom, T. L. Nicholson, J. R. Williams, et al., Nature (London, U.K.) 506, 71 (2014).

    Article  ADS  Google Scholar 

  4. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  Google Scholar 

  5. M. O. Araújo, I. Krešić, R. Kaiser, and W. Guerin, Phys. Rev. Lett. 117, 073002 (2016).

    Article  ADS  Google Scholar 

  6. S. J. Roof, K. J. Kemp, M. D. Havey, and I. M. Sokolov, Phys. Rev. Lett. 117, 073003 (2016).

    Article  ADS  Google Scholar 

  7. W. Guerin, M. O. Araújo, and R. Kaiser, Phys. Rev. Lett. 116, 083601 (2016).

    Article  ADS  Google Scholar 

  8. L. L. Foldy, Phys. Rev. 67, 107 (1945).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Lax, Rev. Mod. Phys. 23, 287 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Javanainen, J. Ruostekoski, B. Vestergaard, and M. R. Francis, Phys. Rev. A 59, 649 (1999).

    Article  ADS  Google Scholar 

  11. M. Rusek, J. Mostowski, and A. Orlowski, Phys. Rev. A 61, 022704 (2000).

    Article  ADS  Google Scholar 

  12. F. A. Pinheiro, M. Rusek, A. Orlowski, and B. A. van Tiggelen, Phys. Rev. E 69, 026605 (2004).

    Article  ADS  Google Scholar 

  13. H. Fu and P. R. Berman, Phys. Rev. A 72, 022104 (2005).

    Article  ADS  Google Scholar 

  14. A. A. Svidzinsky, J. T. Chang, and M. O. Scully, Phys. Rev. A 81, 053821 (2010).

    Article  ADS  Google Scholar 

  15. D. V. Kuznetsov, Vl. K. Rerikh, and M. G. Gladush, J. Exp. Theor. Phys. 113, 647 (2011).

    Article  ADS  Google Scholar 

  16. T. Bienaimé, R. Bachelard, P. W. Courteille, N. Piovella, and R. Kaiser, Fortschr. Phys. 61, 377 (2013).

    Article  MathSciNet  Google Scholar 

  17. S. E. Skipetrov and I. M. Sokolov, Phys. Rev. Lett. 112, 023905 (2014).

    Article  ADS  Google Scholar 

  18. L. Bellando, A. Gero, E. Akkermans, and R. Kaiser, Phys. Rev. A 90, 063822 (2014).

    Article  ADS  Google Scholar 

  19. A. S. Kuraptsev and I. M. Sokolov, Phys. Rev. A 91, 053822 (2015).

    Article  ADS  Google Scholar 

  20. A. S. Kuraptsev and I. M. Sokolov, Phys. Rev. A 94, 022511 (2016).

    Article  ADS  Google Scholar 

  21. I. M. Sokolov, JETP Lett. 106, 341 (2017).

    Article  ADS  Google Scholar 

  22. W. Guerin, M. T. Rouabah, and R. Kaiser, J. Mod. Opt. 64, 895 (2017).

    Article  ADS  Google Scholar 

  23. A. S. Kuraptsev, I. M. Sokolov, and M. D. Havey, Phys. Rev. A 96, 023830 (2017).

    Article  ADS  Google Scholar 

  24. S. E. Skipetrov and I. M. Sokolov, Phys. Rev. B 99, 134201 (2019).

    Article  ADS  Google Scholar 

  25. I. M. Sokolov, D. V. Kupriyanov, and M. D. Havey, J. Exp. Theor. Phys. 112, 246 (2011).

    Article  ADS  Google Scholar 

  26. M. C. W. van Rossum and Th. M. Nieuwenhuizen, Rev. Mod. Phys. 71, 313 (1999).

    Article  ADS  Google Scholar 

  27. S. V. Bozhokin and I. M. Sokolov, Tech. Phys. 63, 1711 (2018).

    Article  Google Scholar 

Download references

Funding

This work was performed under the State assignment for fundamental research (theme code FSEG-2020-0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Sokolov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, I.M. Subradiance of Cold and Dilute Atomic Ensembles Excited by Resonant Pulsed Radiation. J. Exp. Theor. Phys. 132, 56–62 (2021). https://doi.org/10.1134/S1063776121010040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121010040

Navigation