Skip to main content
Log in

Features and Mechanisms of the Generation of Neutrons and Other Particles in First Laser Fusion Experiments

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The quantitative characteristics of the first successful experiments on the formation of a fusion plasma have been discussed. It has been shown that the generation of neutrons detected in these experiments is not directly due to fusion processes in a laser plasma with a comparatively low temperature. Alternative mechanisms of stimulation of a fusion reaction have been considered. It has been shown that the most probable mechanism of neutron generation is attributed to the processes of formation of correlated coherent states, which are generated by a shock wave in the undestroyed part of the target lattice or at the motion of slow ions emitted from the laser plasma in the target. It is reasonable to repeat these experiments, where the effective generation of not only neutrons but also other products of nuclear fusion should be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. N. G. Basov, S. D. Zakharov, P. G. Kryukov, Yu. V. Senatskii, and S. V. Chekalin, PhIAS Preprint No. 63 (Lebedev Phys. Inst. Acad. Sci., Moscow, 1968).

    Google Scholar 

  2. N. G. Basov, S. D. Zakharov, P. G. Kryukov, Yu. V. Senatskii, and S. V. Chekalin, JETP Lett. 8, 14 (1968).

    ADS  Google Scholar 

  3. N. G. Basov, S. D. Zakharov, O. N. Krokhin, P. G. Kryukov, Yu. V. Senatskii, E. L. Tyurin, A. I. Fedosimov, S. V. Chekalin, and M. Ya. Shchelev, Sov. J. Quantum Electron. 1, 2 (1971).

    Article  ADS  Google Scholar 

  4. M. M. Basko, Physical Principles of Inertial Thermonuclear Fusion (ITEF, Moscow, 2008) [in Russian].

    Google Scholar 

  5. N. Burdonskii, A. Yu. Gol’tsov, A. G. Leonov, K. N. Makarov, I. S. Timofeev, and V. N. Yufa, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 36 (2), 8 (2013).

    Google Scholar 

  6. S. I. Anisimov, A. M. Prokhorov, and V. E. Fortov, Sov. Phys. Usp. 27, 181 (1984).

    Article  ADS  Google Scholar 

  7. V. E. Fortov, High Energy Density Physics (Fizmatlit, Moscow, 2013; Springer, Switzerland, 2016), Par. 4.3.

  8. R. Mulser and D. Bauer, High Power Laser-Matter Interaction (Springer, Berlin, 2010).

    Book  Google Scholar 

  9. P. Mora, Phys. Fluids 25, 1051 (1982).

    Article  ADS  Google Scholar 

  10. V. I. Vysotskii and S. V. Adamenko, Tech. Phys. 55, 613 (2010).

    Article  Google Scholar 

  11. V. I. Vysotskii and M. V. Vysotskyy, Eur. Phys. J. A 49, 99 (2013).

    Article  ADS  Google Scholar 

  12. V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskyy, Ann. Nucl. Energy 62, 618 (2013).

    Article  Google Scholar 

  13. V. I. Vysotskii and M. V. Vysotskyy, Curr. Sci. 108, 524 (2015).

    Google Scholar 

  14. V. I. Vysotskii and M. V. Vysotskii, J. Exp. Theor. Phys. 125, 195 (2017).

    Article  ADS  Google Scholar 

  15. V. I. Vysotskii and M. V. Vysotskyy, RENSIT 9, 21 (2017).

    Article  Google Scholar 

  16. V. I. Vysotskii, M. V. Vysotskyy, and S. Bartalucci, J. Exp. Theor. Phys. 127, 479 (2017).

    Article  ADS  Google Scholar 

  17. S. Bartalucci, V. I. Vysotskii, and M. V. Vysotsky, Phys. Rev. Accel. Beams 22, 054503 (2019).

    Article  ADS  Google Scholar 

  18. E. Schrödinger, Ber. Kgl. Akad. Wiss. 24, 296 (1930).

    Google Scholar 

  19. H. P. Robertson, Phys. Rev. A 35, 667 (1930).

    Google Scholar 

  20. V. V. Dodonov and V. I. Man’ko, Tr. FIAN 183, 71 (1987).

    Google Scholar 

  21. V. V. Dodonov, A. V. Klimov, and V. I. Man’ko, Tr. FIAN 200, 56 (1991).

    Google Scholar 

  22. A. A. Kornilova, V. I. Vysotskii, Yu. A. Sapozhnikov, I. E. Vlasova, S. N. Gaidamaka, et al., Inzhen. Fiz., No. 5, 13 (2018).

  23. A. A. Kornilova, V. I. Vysotskii, T. Krit, M. V. Vysotskyy, and S. N. Gaydamaka, J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 14, 117 (2020).

    Article  Google Scholar 

  24. V. I. Vysotskii, Infinite Energy 18 (108), 30 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vysotskii.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysotskii, V.I., Kornilova, A.A. & Vysotskyy, M.V. Features and Mechanisms of the Generation of Neutrons and Other Particles in First Laser Fusion Experiments. J. Exp. Theor. Phys. 131, 566–571 (2020). https://doi.org/10.1134/S1063776120090101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120090101

Navigation